Suppr超能文献

锰超氧化物歧化酶活性调节静止生长与增殖生长之间的转变。

Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth.

作者信息

Sarsour Ehab H, Venkataraman Sujatha, Kalen Amanda L, Oberley Larry W, Goswami Prabhat C

机构信息

Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Aging Cell. 2008 Jun;7(3):405-17. doi: 10.1111/j.1474-9726.2008.00384.x. Epub 2008 Mar 10.

Abstract

In recent years, the intracellular reactive oxygen species (ROS) levels have gained increasing attention as a critical regulator of cellular proliferation. We investigated the hypothesis that manganese superoxide dismutase (MnSOD) activity regulates proliferative and quiescent growth by modulating cellular ROS levels. Decreasing MnSOD activity favored proliferation in mouse embryonic fibroblasts (MEF), while increasing MnSOD activity facilitated proliferating cells' transitions into quiescence. MnSOD +/- and -/- MEFs demonstrated increased superoxide steady-state levels; these fibroblasts failed to exit from the proliferative cycle, and showed increasing cyclin D1 and cyclin B1 protein levels. MnSOD +/- MEFs exhibited an increase in the percentage of G(2) cells compared to MnSOD +/+ MEFs. Overexpression of MnSOD in MnSOD +/- MEFs suppressed superoxide levels and G(2) accumulation, decreased cyclin B1 protein levels, and facilitated cells' transit into quiescence. While ROS are known to regulate differentiation and cell death pathways, both of which are irreversible processes, our results show MnSOD activity and, therefore, mitochondria-derived ROS levels regulate cellular proliferation and quiescence, which are reversible processes essential to prevent aberrant proliferation and subsequent exhaustion of normal cell proliferative capacity. These results support the hypothesis that MnSOD activity regulates a mitochondrial 'ROS-switch' favoring a superoxide-signaling regulating proliferation and a hydrogen peroxide-signaling supporting quiescence.

摘要

近年来,细胞内活性氧(ROS)水平作为细胞增殖的关键调节因子越来越受到关注。我们研究了锰超氧化物歧化酶(MnSOD)活性通过调节细胞ROS水平来调控增殖性生长和静止性生长的假说。降低MnSOD活性有利于小鼠胚胎成纤维细胞(MEF)的增殖,而增加MnSOD活性则促进增殖细胞向静止状态转变。MnSOD+/-和-/-的MEF表现出超氧化物稳态水平升高;这些成纤维细胞无法退出增殖周期,并显示细胞周期蛋白D1和细胞周期蛋白B1的蛋白水平增加。与MnSOD+/+的MEF相比,MnSOD+/-的MEF中G(2)期细胞的百分比增加。在MnSOD+/-的MEF中过表达MnSOD可抑制超氧化物水平和G(2)期积累,降低细胞周期蛋白B1的蛋白水平,并促进细胞进入静止状态。虽然已知ROS可调节分化和细胞死亡途径,这两个过程都是不可逆的,但我们的结果表明,MnSOD活性以及因此线粒体衍生的ROS水平可调节细胞增殖和静止,这是防止异常增殖和随后正常细胞增殖能力耗竭所必需的可逆过程。这些结果支持了以下假说:MnSOD活性调节线粒体的“ROS开关”,有利于超氧化物信号调节增殖,而过氧化氢信号支持静止。

相似文献

1
Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth.
Aging Cell. 2008 Jun;7(3):405-17. doi: 10.1111/j.1474-9726.2008.00384.x. Epub 2008 Mar 10.
3
Manganese superoxide dismutase regulates a redox cycle within the cell cycle.
Antioxid Redox Signal. 2014 Apr 1;20(10):1618-27. doi: 10.1089/ars.2013.5303. Epub 2013 May 29.
4
Mitochondria-targeted antioxidant enzyme activity regulates radioresistance in human pancreatic cancer cells.
Cancer Biol Ther. 2008 Aug;7(8):1271-9. doi: 10.4161/cbt.7.8.6300. Epub 2008 Aug 13.
5
MnSOD activity protects mitochondrial morphology of quiescent fibroblasts from age associated abnormalities.
Mitochondrion. 2010 Jun;10(4):342-9. doi: 10.1016/j.mito.2010.02.004. Epub 2010 Mar 2.
6
Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses.
Mol Cell Biol. 2003 Apr;23(7):2362-78. doi: 10.1128/MCB.23.7.2362-2378.2003.
7
Manganese superoxide dismutase regulates a metabolic switch during the mammalian cell cycle.
Cancer Res. 2012 Aug 1;72(15):3807-16. doi: 10.1158/0008-5472.CAN-11-1063. Epub 2012 Jun 18.
8
Loss of manganese superoxide dismutase leads to abnormal growth and signal transduction in mouse embryonic fibroblasts.
Free Radic Biol Med. 2010 Nov 1;49(8):1255-62. doi: 10.1016/j.freeradbiomed.2010.07.006. Epub 2010 Jul 16.
9
Polychlorinated biphenyl induced ROS signaling delays the entry of quiescent human breast epithelial cells into the proliferative cycle.
Free Radic Biol Med. 2010 Jul 1;49(1):40-9. doi: 10.1016/j.freeradbiomed.2010.03.012. Epub 2010 Mar 20.
10
MnSOD activity regulates hydroxytyrosol-induced extension of chronological lifespan.
Age (Dordr). 2012 Feb;34(1):95-109. doi: 10.1007/s11357-011-9223-7. Epub 2011 Mar 8.

引用本文的文献

1
Pterostilbene Induces Apoptosis in Awakening Quiescent Prostate Cancer Cells by Upregulating C/EBP-β-Mediated SOD2 Transcription.
Int J Biol Sci. 2025 May 7;21(8):3379-3396. doi: 10.7150/ijbs.106219. eCollection 2025.
5
Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression.
Antioxidants (Basel). 2021 Nov 19;10(11):1838. doi: 10.3390/antiox10111838.
7
Oxidative Stress in Cancer Cell Metabolism.
Antioxidants (Basel). 2021 Apr 22;10(5):642. doi: 10.3390/antiox10050642.
10
Role of Mitochondria in Cancer Stem Cell Resistance.
Cells. 2020 Jul 15;9(7):1693. doi: 10.3390/cells9071693.

本文引用的文献

2
3
A redox cycle within the cell cycle: ring in the old with the new.
Oncogene. 2007 Feb 22;26(8):1101-9. doi: 10.1038/sj.onc.1209895. Epub 2006 Aug 21.
4
Enzymatic activity is necessary for the tumor-suppressive effects of MnSOD.
Antioxid Redox Signal. 2006 Jul-Aug;8(7-8):1283-93. doi: 10.1089/ars.2006.8.1283.
5
6
Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes.
Science. 2005 Nov 18;310(5751):1152-8. doi: 10.1126/science.1120499. Epub 2005 Oct 27.
7
Redox redux: revisiting PTPs and the control of cell signaling.
Cell. 2005 Jun 3;121(5):667-70. doi: 10.1016/j.cell.2005.05.016.
9
Manganese superoxide dismutase protects the proliferative capacity of confluent normal human fibroblasts.
J Biol Chem. 2005 May 6;280(18):18033-41. doi: 10.1074/jbc.M501939200. Epub 2005 Mar 2.
10
Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system.
Antioxid Redox Signal. 2004 Feb;6(1):63-74. doi: 10.1089/152308604771978354.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验