Suppr超能文献

锰超氧化物歧化酶在细胞周期内调节一个氧化还原循环。

Manganese superoxide dismutase regulates a redox cycle within the cell cycle.

作者信息

Sarsour Ehab H, Kalen Amanda L, Goswami Prabhat C

机构信息

Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa , Iowa City, Iowa.

出版信息

Antioxid Redox Signal. 2014 Apr 1;20(10):1618-27. doi: 10.1089/ars.2013.5303. Epub 2013 May 29.

Abstract

SIGNIFICANCE

Manganese superoxide dismutase (MnSOD) is a nuclear-encoded and mitochondria-matrix-localized oxidation-reduction (redox) enzyme that regulates cellular redox homeostasis. Cellular redox processes are known to regulate proliferative and quiescent growth states. Therefore, MnSOD and mitochondria-generated reactive oxygen species (ROS) are believed to be critical regulators of quiescent cells' entry into the cell cycle and exit from the proliferative cycle back to the quiescent state.

RECENT ADVANCES/CRITICAL ISSUES: Recent evidence suggests that the intracellular redox environment fluctuates during the cell cycle, shifting toward a more oxidized status during mitosis. MnSOD activity is higher in G0/G1 cells compared with S, G2 and M phases. After cell division, MnSOD activity increases in the G1 phase of the daughter generation. The periodic fluctuation in MnSOD activity during the cell cycle inversely correlates with cellular superoxide levels as well as glucose and oxygen consumption. Based on an inverse correlation between MnSOD activity and glucose consumption during the cell cycle, it is proposed that MnSOD is a central molecular player for the "Warburg effect."

FUTURE DIRECTIONS

In general, loss of MnSOD activity results in aberrant proliferation. A better understanding of the MnSOD and mitochondrial ROS-dependent cell cycle processes may lead to novel approaches to overcome aberrant proliferation. Since ROS have both deleterious (pathological) and beneficial (physiological) effects, it is proposed that "eustress" should be used when discussing ROS processes that regulate normal physiological functions, while "oxidative stress" should be used to discuss the deleterious effects of ROS.

摘要

意义

锰超氧化物歧化酶(MnSOD)是一种核编码且定位于线粒体基质的氧化还原酶,可调节细胞氧化还原稳态。已知细胞氧化还原过程可调节增殖和静止生长状态。因此,MnSOD和线粒体产生的活性氧(ROS)被认为是静止细胞进入细胞周期以及从增殖周期回到静止状态的关键调节因子。

最新进展/关键问题:最近的证据表明,细胞内氧化还原环境在细胞周期中会发生波动,在有丝分裂期间向更氧化的状态转变。与S期、G2期和M期相比,G0/G1期细胞中的MnSOD活性更高。细胞分裂后,子代细胞G1期的MnSOD活性增加。细胞周期中MnSOD活性的周期性波动与细胞超氧化物水平以及葡萄糖和氧气消耗呈负相关。基于细胞周期中MnSOD活性与葡萄糖消耗之间的负相关关系,有人提出MnSOD是“瓦伯格效应”的核心分子参与者。

未来方向

一般来说,MnSOD活性丧失会导致异常增殖。更好地了解MnSOD和线粒体ROS依赖性细胞周期过程可能会带来克服异常增殖的新方法。由于ROS具有有害(病理)和有益(生理)两种作用,因此有人提出在讨论调节正常生理功能的ROS过程时应使用“良性应激”,而在讨论ROS的有害作用时应使用“氧化应激”。

相似文献

1
Manganese superoxide dismutase regulates a redox cycle within the cell cycle.
Antioxid Redox Signal. 2014 Apr 1;20(10):1618-27. doi: 10.1089/ars.2013.5303. Epub 2013 May 29.
2
Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth.
Aging Cell. 2008 Jun;7(3):405-17. doi: 10.1111/j.1474-9726.2008.00384.x. Epub 2008 Mar 10.
3
Manganese superoxide dismutase regulates a metabolic switch during the mammalian cell cycle.
Cancer Res. 2012 Aug 1;72(15):3807-16. doi: 10.1158/0008-5472.CAN-11-1063. Epub 2012 Jun 18.
6
Insights into Manganese Superoxide Dismutase and Human Diseases.
Int J Mol Sci. 2022 Dec 14;23(24):15893. doi: 10.3390/ijms232415893.
8
Inhibition of cell growth in NIH/3T3 fibroblasts by overexpression of manganese superoxide dismutase: mechanistic studies.
J Cell Physiol. 1998 Jun;175(3):359-69. doi: 10.1002/(SICI)1097-4652(199806)175:3<359::AID-JCP14>3.0.CO;2-0.
9
UVB-induced inactivation of manganese-containing superoxide dismutase promotes mitophagy via ROS-mediated mTORC2 pathway activation.
J Biol Chem. 2019 Apr 26;294(17):6831-6842. doi: 10.1074/jbc.RA118.006595. Epub 2019 Mar 11.
10
Invited review: manganese superoxide dismutase in disease.
Free Radic Res. 2001 Apr;34(4):325-36. doi: 10.1080/10715760100300281.

引用本文的文献

1
SOD2 is a regulator of proteasomal degradation promoting an adaptive cellular starvation response.
Cell Rep. 2025 Apr 22;44(4):115434. doi: 10.1016/j.celrep.2025.115434. Epub 2025 Mar 24.
4
The role of reactive oxygen species in bone cell physiology and pathophysiology.
Bone Rep. 2023 Feb 24;19:101664. doi: 10.1016/j.bonr.2023.101664. eCollection 2023 Dec.
7
Insights into Manganese Superoxide Dismutase and Human Diseases.
Int J Mol Sci. 2022 Dec 14;23(24):15893. doi: 10.3390/ijms232415893.
8
Angiopoietin-Like Protein 4 Is Involved in Manganese Superoxide Dismutase-Mediated Suppression of Breast Cancer Cell Growth.
Bull Exp Biol Med. 2022 Jun;173(2):240-245. doi: 10.1007/s10517-022-05526-y. Epub 2022 Jun 23.
9
, a Potential Transcriptional Target Underpinning CD44-Promoted Breast Cancer Progression.
Molecules. 2022 Jan 26;27(3):811. doi: 10.3390/molecules27030811.
10
Effective Use of Water in Crop Plants in Dryland Agriculture: Implications of Reactive Oxygen Species and Antioxidative System.
Front Plant Sci. 2022 Jan 10;12:778270. doi: 10.3389/fpls.2021.778270. eCollection 2021.

本文引用的文献

1
Proteomic identification of a direct role for cyclin d1 in DNA damage repair.
Cancer Res. 2012 Sep 1;72(17):4289-93. doi: 10.1158/0008-5472.CAN-11-3549. Epub 2012 Aug 22.
2
Manganese superoxide dismutase regulates a metabolic switch during the mammalian cell cycle.
Cancer Res. 2012 Aug 1;72(15):3807-16. doi: 10.1158/0008-5472.CAN-11-1063. Epub 2012 Jun 18.
3
Preferential selection of MnSOD transcripts in proliferating normal and cancer cells.
Oncogene. 2012 Mar 8;31(10):1207-16. doi: 10.1038/onc.2011.325. Epub 2011 Aug 1.
4
Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide.
Anticancer Agents Med Chem. 2011 May 1;11(4):341-6. doi: 10.2174/187152011795677544.
5
MnSOD activity regulates hydroxytyrosol-induced extension of chronological lifespan.
Age (Dordr). 2012 Feb;34(1):95-109. doi: 10.1007/s11357-011-9223-7. Epub 2011 Mar 8.
6
Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling.
Antioxid Redox Signal. 2011 Feb 1;14(3):459-68. doi: 10.1089/ars.2010.3363. Epub 2010 Oct 18.
7
MnSOD activity protects mitochondrial morphology of quiescent fibroblasts from age associated abnormalities.
Mitochondrion. 2010 Jun;10(4):342-9. doi: 10.1016/j.mito.2010.02.004. Epub 2010 Mar 2.
8
The landscape of somatic copy-number alteration across human cancers.
Nature. 2010 Feb 18;463(7283):899-905. doi: 10.1038/nature08822.
9
The Krebs cycle meets the cell cycle: mitochondria and the G1-S transition.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11825-6. doi: 10.1073/pnas.0906430106. Epub 2009 Jul 15.
10
A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11960-5. doi: 10.1073/pnas.0904875106. Epub 2009 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验