Kun Adám, Papp Balázs, Szathmáry Eörs
Collegium Budapest, Institute for Advanced Study, Szentháromság utca 2, Budapest H-1014, Hungary.
Genome Biol. 2008;9(3):R51. doi: 10.1186/gb-2008-9-3-r51. Epub 2008 Mar 10.
If chemical A is necessary for the synthesis of more chemical A, then A has the power of replication (such systems are known as autocatalytic systems). We provide the first systems-level analysis searching for small-molecular autocatalytic components in the metabolisms of diverse organisms, including an inferred minimal metabolism.
We find that intermediary metabolism is invariably autocatalytic for ATP. Furthermore, we provide evidence for the existence of additional, organism-specific autocatalytic metabolites in the forms of coenzymes (NAD+, coenzyme A, tetrahydrofolate, quinones) and sugars. Although the enzymatic reactions of a number of autocatalytic cycles are present in most of the studied organisms, they display obligatorily autocatalytic behavior in a few networks only, hence demonstrating the need for a systems-level approach to identify metabolic replicators embedded in large networks.
Metabolic replicators are apparently common and potentially both universal and ancestral: without their presence, kick-starting metabolic networks is impossible, even if all enzymes and genes are present in the same cell. Identification of metabolic replicators is also important for attempts to create synthetic cells, as some of these autocatalytic molecules will presumably be needed to be added to the system as, by definition, the system cannot synthesize them without their initial presence.
如果化学物质A对于更多化学物质A的合成是必需的,那么A就具有复制能力(这样的系统被称为自催化系统)。我们进行了首次系统层面的分析,以寻找包括推断的最小代谢在内的多种生物体代谢中的小分子自催化成分。
我们发现中间代谢对于ATP总是自催化的。此外,我们提供了证据,证明以辅酶(NAD +、辅酶A、四氢叶酸、醌)和糖类形式存在的其他特定于生物体的自催化代谢物的存在。尽管许多自催化循环的酶促反应存在于大多数被研究的生物体中,但它们仅在少数网络中表现出强制性的自催化行为,因此表明需要一种系统层面的方法来识别嵌入大型网络中的代谢复制子。
代谢复制子显然很常见,并且可能既是普遍存在的又是原始的:没有它们的存在,即使所有酶和基因都存在于同一细胞中,启动代谢网络也是不可能的。代谢复制子的识别对于创建合成细胞的尝试也很重要,因为根据定义,系统在没有它们最初存在的情况下无法合成它们,所以可能需要向系统中添加一些这些自催化分子。