Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Ecol Evol. 2024 May;8(5):999-1009. doi: 10.1038/s41559-024-02361-4. Epub 2024 Mar 22.
An unresolved question in the origin and evolution of life is whether a continuous path from geochemical precursors to the majority of molecules in the biosphere can be reconstructed from modern-day biochemistry. Here we identified a feasible path by simulating the evolution of biosphere-scale metabolism, using only known biochemical reactions and models of primitive coenzymes. We find that purine synthesis constitutes a bottleneck for metabolic expansion, which can be alleviated by non-autocatalytic phosphoryl coupling agents. Early phases of the expansion are enriched with enzymes that are metal dependent and structurally symmetric, supporting models of early biochemical evolution. This expansion trajectory suggests distinct hypotheses regarding the tempo, mode and timing of metabolic pathway evolution, including a late appearance of methane metabolisms and oxygenic photosynthesis consistent with the geochemical record. The concordance between biological and geological analyses suggests that this trajectory provides a plausible evolutionary history for the vast majority of core biochemistry.
生命起源和演化中的一个悬而未决的问题是,是否可以从现代生物化学中重建从地球化学前体到生物圈中大多数分子的连续途径。在这里,我们通过仅使用已知的生化反应和原始辅酶模型来模拟生物圈规模代谢的演化,确定了一条可行的途径。我们发现,嘌呤合成构成了代谢扩张的瓶颈,而非自催化磷酸化偶联剂可以缓解这一瓶颈。扩张的早期阶段富含金属依赖性和结构对称的酶,支持早期生化演化的模型。这一扩张轨迹为代谢途径演化的时空调控和时机提供了明确的假设,包括甲烷代谢和产氧光合作用的出现较晚,与地球化学记录一致。生物学和地质学分析的一致性表明,这条轨迹为绝大多数核心生物化学提供了一个合理的进化史。