Hua Qing-xin, Nakagawa Satoe H, Jia Wenhua, Huang Kun, Phillips Nelson B, Hu Shi-quan, Weiss Michael A
Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
J Biol Chem. 2008 May 23;283(21):14703-16. doi: 10.1074/jbc.M800313200. Epub 2008 Mar 10.
Single-chain insulin (SCI) analogs provide insight into the inter-relation of hormone structure, function, and dynamics. Although compatible with wild-type structure, short connecting segments (<3 residues) prevent induced fit upon receptor binding and so are essentially without biological activity. Substantial but incomplete activity can be regained with increasing linker length. Here, we describe the design, structure, and function of a single-chain insulin analog (SCI-57) containing a 6-residue linker (GGGPRR). Native receptor-binding affinity (130 +/- 8% relative to the wild type) is achieved as hindrance by the linker is offset by favorable substitutions in the insulin moiety. The thermodynamic stability of SCI-57 is markedly increased (DeltaDeltaG(u) = 0.7 +/- 0.1 kcal/mol relative to the corresponding two-chain analog and 1.9 +/- 0.1 kcal/mol relative to wild-type insulin). Analysis of inter-residue nuclear Overhauser effects demonstrates that a native-like fold is maintained in solution. Surprisingly, the glycine-rich connecting segment folds against the insulin moiety: its central Pro contacts Val(A3) at the edge of the hydrophobic core, whereas the final Arg extends the A1-A8 alpha-helix. Comparison between SCI-57 and its parent two-chain analog reveals striking enhancement of multiple native-like nuclear Overhauser effects within the tethered protein. These contacts are consistent with wild-type crystal structures but are ordinarily attenuated in NMR spectra of two-chain analogs, presumably due to conformational fluctuations. Linker-specific damping of fluctuations provides evidence for the intrinsic flexibility of an insulin monomer. In addition to their biophysical interest, ultrastable SCIs may enhance the safety and efficacy of insulin replacement therapy in the developing world.
单链胰岛素(SCI)类似物有助于深入了解激素结构、功能和动力学之间的相互关系。尽管与野生型结构兼容,但短连接片段(<3个残基)会阻止受体结合时的诱导契合,因此基本没有生物活性。随着连接子长度增加,可恢复大量但不完全的活性。在此,我们描述了一种含有6个残基连接子(GGGPRR)的单链胰岛素类似物(SCI-57)的设计、结构和功能。由于连接子的阻碍被胰岛素部分的有利取代所抵消,从而实现了与天然受体的结合亲和力(相对于野生型为130±8%)。SCI-57的热力学稳定性显著提高(相对于相应的双链类似物,ΔΔG(u)=0.7±0.1 kcal/mol;相对于野生型胰岛素,ΔΔG(u)=1.9±0.1 kcal/mol)。对残基间核Overhauser效应的分析表明,在溶液中维持了类似天然的折叠构象。令人惊讶的是,富含甘氨酸的连接片段靠在胰岛素部分上折叠:其中心脯氨酸在疏水核心边缘与Val(A3)接触,而最后的精氨酸延伸了A1-A8α螺旋。SCI-57与其亲本双链类似物之间的比较显示,在连接的蛋白质中多个类似天然的核Overhauser效应显著增强。这些接触与野生型晶体结构一致,但在双链类似物的NMR光谱中通常会减弱,可能是由于构象波动。连接子特异性的波动阻尼为胰岛素单体的内在灵活性提供了证据。除了其生物物理意义外,超稳定的SCI可能会提高发展中国家胰岛素替代疗法的安全性和有效性。