Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
J Biol Chem. 2010 Feb 12;285(7):5040-55. doi: 10.1074/jbc.M109.062992. Epub 2009 Dec 3.
Proinsulin exhibits a single structure, whereas insulin-like growth factors refold as two disulfide isomers in equilibrium. Native insulin-related growth factor (IGF)-I has canonical cystines (A6-A11, A7-B7, and A20-B19) maintained by IGF-binding proteins; IGF-swap has alternative pairing (A7-A11, A6-B7, and A20-B19) and impaired activity. Studies of mini-domain models suggest that residue B5 (His in insulin and Thr in IGFs) governs the ambiguity or uniqueness of disulfide pairing. Residue B5, a site of mutation in proinsulin causing neonatal diabetes, is thus of broad biophysical interest. Here, we characterize reciprocal B5 substitutions in the two proteins. In insulin, His(B5) --> Thr markedly destabilizes the hormone (DeltaDeltaG(u) 2.0 +/- 0.2 kcal/mol), impairs chain combination, and blocks cellular secretion of proinsulin. The reciprocal IGF-I substitution Thr(B5) --> His (residue 4) specifies a unique structure with native (1)H NMR signature. Chemical shifts and nuclear Overhauser effects are similar to those of native IGF-I. Whereas wild-type IGF-I undergoes thiol-catalyzed disulfide exchange to yield IGF-swap, His(B5)-IGF-I retains canonical pairing. Chemical denaturation studies indicate that His(B5) does not significantly enhance thermodynamic stability (DeltaDeltaG(u) 0.2 +/- 0.2 kcal/mol), implying that the substitution favors canonical pairing by destabilizing competing folds. Whereas the activity of Thr(B5)-insulin is decreased 5-fold, His(B5)-IGF-I exhibits 2-fold increased affinity for the IGF receptor and augmented post-receptor signaling. We propose that conservation of Thr(B5) in IGF-I, rescued from structural ambiguity by IGF-binding proteins, reflects fine-tuning of signal transduction. In contrast, the conservation of His(B5) in insulin highlights its critical role in insulin biosynthesis.
胰岛素原表现出单一结构,而胰岛素样生长因子则在平衡时重新折叠为两种二硫键异构体。天然胰岛素相关生长因子(IGF)-I 具有由 IGF 结合蛋白维持的典型半胱氨酸(A6-A11、A7-B7 和 A20-B19);IGF-交换具有替代配对(A7-A11、A6-B7 和 A20-B19)和活性受损。迷你结构域模型的研究表明,残基 B5(胰岛素中的 His 和 IGFs 中的 Thr)控制着二硫键配对的模糊性或独特性。残基 B5 是导致新生儿糖尿病的胰岛素原突变的位点,因此具有广泛的生物物理意义。在这里,我们描述了这两种蛋白质中 B5 残基的相互取代。在胰岛素中,His(B5)→ Thr 显着降低激素的稳定性(ΔΔG(u)2.0 ± 0.2 kcal/mol),损害链组合,并阻止前胰岛素的细胞分泌。IGF-I 中的相应 Thr(B5)→ His(残基 4)取代指定了具有天然(1)H NMR 特征的独特结构。化学位移和核 Overhauser 效应与天然 IGF-I 相似。尽管野生型 IGF-I 经历硫醇催化的二硫键交换以产生 IGF-交换,但 His(B5)-IGF-I 保留了典型的配对。化学变性研究表明,His(B5)不会显着增强热力学稳定性(ΔΔG(u)0.2 ± 0.2 kcal/mol),这意味着该取代通过使竞争折叠失稳而有利于典型配对。虽然 Thr(B5)-胰岛素的活性降低了 5 倍,但 His(B5)-IGF-I 对 IGF 受体的亲和力增加了 2 倍,并且受体后信号增强。我们提出,IGF-I 中的 Thr(B5)的保守性,通过 IGF 结合蛋白从结构模糊性中挽救出来,反映了信号转导的微调。相比之下,胰岛素中 His(B5)的保守性突出了它在胰岛素生物合成中的关键作用。