Zacharaki Evangelia I, Hogea Cosmina S, Biros George, Davatzikos Christos
Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, 3600 Market Street, Suite 380, Philadelphia, PA 19104, USA.
IEEE Trans Biomed Eng. 2008 Mar;55(3):1233-6. doi: 10.1109/TBME.2007.905484.
Simulating the brain tissue deformation caused by tumor growth has been found to aid the deformable registration of brain tumor images. In this paper, we evaluate the impact that different biomechanical simulators have on the accuracy of deformable registration. We use two alternative frameworks for biomechanical simulations of mass effect in 3-D magnetic resonance (MR) brain images. The first one is based on a finite-element model of nonlinear elasticity and unstructured meshes using the commercial software package ABAQUS. The second one employs incremental linear elasticity and regular grids in a fictitious domain method. In practice, biomechanical simulations via the second approach may be at least ten times faster. Landmarks error and visual examination of the coregistered images indicate that the two alternative frameworks for biomechanical simulations lead to comparable results of deformable registration. Thus, the computationally less expensive biomechanical simulator offers a practical alternative for registration purposes.
已发现模拟肿瘤生长引起的脑组织变形有助于脑肿瘤图像的可变形配准。在本文中,我们评估了不同生物力学模拟器对可变形配准准确性的影响。我们使用两种替代框架对三维磁共振(MR)脑图像中的质量效应进行生物力学模拟。第一种基于使用商业软件包ABAQUS的非线性弹性有限元模型和非结构化网格。第二种在虚拟域方法中采用增量线性弹性和规则网格。在实践中,通过第二种方法进行的生物力学模拟可能至少快十倍。地标误差和对配准图像的视觉检查表明,两种生物力学模拟替代框架导致可变形配准的结果相当。因此,计算成本较低的生物力学模拟器为配准目的提供了一种实用的替代方案。