Suppr超能文献

脑肿瘤图像可变形配准中生物力学模拟器的比较研究。

A comparative study of biomechanical simulators in deformable registration of brain tumor images.

作者信息

Zacharaki Evangelia I, Hogea Cosmina S, Biros George, Davatzikos Christos

机构信息

Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, 3600 Market Street, Suite 380, Philadelphia, PA 19104, USA.

出版信息

IEEE Trans Biomed Eng. 2008 Mar;55(3):1233-6. doi: 10.1109/TBME.2007.905484.

Abstract

Simulating the brain tissue deformation caused by tumor growth has been found to aid the deformable registration of brain tumor images. In this paper, we evaluate the impact that different biomechanical simulators have on the accuracy of deformable registration. We use two alternative frameworks for biomechanical simulations of mass effect in 3-D magnetic resonance (MR) brain images. The first one is based on a finite-element model of nonlinear elasticity and unstructured meshes using the commercial software package ABAQUS. The second one employs incremental linear elasticity and regular grids in a fictitious domain method. In practice, biomechanical simulations via the second approach may be at least ten times faster. Landmarks error and visual examination of the coregistered images indicate that the two alternative frameworks for biomechanical simulations lead to comparable results of deformable registration. Thus, the computationally less expensive biomechanical simulator offers a practical alternative for registration purposes.

摘要

已发现模拟肿瘤生长引起的脑组织变形有助于脑肿瘤图像的可变形配准。在本文中,我们评估了不同生物力学模拟器对可变形配准准确性的影响。我们使用两种替代框架对三维磁共振(MR)脑图像中的质量效应进行生物力学模拟。第一种基于使用商业软件包ABAQUS的非线性弹性有限元模型和非结构化网格。第二种在虚拟域方法中采用增量线性弹性和规则网格。在实践中,通过第二种方法进行的生物力学模拟可能至少快十倍。地标误差和对配准图像的视觉检查表明,两种生物力学模拟替代框架导致可变形配准的结果相当。因此,计算成本较低的生物力学模拟器为配准目的提供了一种实用的替代方案。

相似文献

1
A comparative study of biomechanical simulators in deformable registration of brain tumor images.
IEEE Trans Biomed Eng. 2008 Mar;55(3):1233-6. doi: 10.1109/TBME.2007.905484.
2
Deformable registration of brain tumor images via a statistical model of tumor-induced deformation.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):263-70. doi: 10.1007/11566489_33.
3
Deformable registration of brain tumor images via a statistical model of tumor-induced deformation.
Med Image Anal. 2006 Oct;10(5):752-63. doi: 10.1016/j.media.2006.06.005. Epub 2006 Jul 24.
4
Hybrid formulation of the model-based non-rigid registration problem to improve accuracy and robustness.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):295-302. doi: 10.1007/11566489_37.
5
ORBIT: a multiresolution framework for deformable registration of brain tumor images.
IEEE Trans Med Imaging. 2008 Aug;27(8):1003-17. doi: 10.1109/TMI.2008.916954.
6
7
Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth.
Neuroimage. 2009 Jul 1;46(3):762-74. doi: 10.1016/j.neuroimage.2009.01.051.
8
Elastic registration of prostate MR images based on estimation of deformation states.
Med Image Anal. 2015 Apr;21(1):87-103. doi: 10.1016/j.media.2014.12.007. Epub 2015 Jan 8.
9
Large deformation inverse consistent elastic image registration.
Inf Process Med Imaging. 2003 Jul;18:438-49. doi: 10.1007/978-3-540-45087-0_37.
10
Learning best features for deformable registration of MR brains.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):179-87. doi: 10.1007/11566489_23.

引用本文的文献

1
A position- and time-dependent pressure profile to model viscoelastic mechanical behavior of the brain tissue due to tumor growth.
Comput Methods Biomech Biomed Engin. 2023 May;26(6):660-672. doi: 10.1080/10255842.2022.2082245. Epub 2022 May 31.
2
IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL CALIBRATION.
SIAM J Sci Comput. 2020;42(3):B549-B580. doi: 10.1137/19M1275280. Epub 2020 May 6.
3
Biomechanical modelling of spinal tumour anisotropic growth.
Proc Math Phys Eng Sci. 2020 Jun;476(2238):20190364. doi: 10.1098/rspa.2019.0364. Epub 2020 Jun 3.
4
Integrated Biophysical Modeling and Image Analysis: Application to Neuro-Oncology.
Annu Rev Biomed Eng. 2020 Jun 4;22:309-341. doi: 10.1146/annurev-bioeng-062117-121105.
5
Coupling brain-tumor biophysical models and diffeomorphic image registration.
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.
6
Towards patient-specific modeling of brain tumor growth and formation of secondary nodes guided by DTI-MRI.
Neuroimage Clin. 2018 Aug 31;20:664-673. doi: 10.1016/j.nicl.2018.08.032. eCollection 2018.
7
Biphasic modeling of brain tumor biomechanics and response to radiation treatment.
J Biomech. 2016 Jun 14;49(9):1524-1531. doi: 10.1016/j.jbiomech.2016.03.029. Epub 2016 Mar 30.
8
Compounding local invariant features and global deformable geometry for medical image registration.
PLoS One. 2014 Aug 28;9(8):e105815. doi: 10.1371/journal.pone.0105815. eCollection 2014.
9
PAIRWISE REGISTRATION OF IMAGES WITH MISSING CORRESPONDENCES DUE TO RESECTION.
Proc IEEE Int Symp Biomed Imaging. 2010 Apr 14;2010:1025-1028. doi: 10.1109/ISBI.2010.5490164.
10
Simulation of brain mass effect with an arbitrary Lagrangian and Eulerian FEM.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):274-81. doi: 10.1007/978-3-642-15745-5_34.

本文引用的文献

1
ORBIT: a multiresolution framework for deformable registration of brain tumor images.
IEEE Trans Med Imaging. 2008 Aug;27(8):1003-17. doi: 10.1109/TMI.2008.916954.
2
A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3D MR images.
Phys Med Biol. 2007 Dec 7;52(23):6893-908. doi: 10.1088/0031-9155/52/23/008. Epub 2007 Nov 8.
3
Deformable registration of brain tumor images via a statistical model of tumor-induced deformation.
Med Image Anal. 2006 Oct;10(5):752-63. doi: 10.1016/j.media.2006.06.005. Epub 2006 Jul 24.
4
Finite element modeling of brain tumor mass-effect from 3D medical images.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):400-8. doi: 10.1007/11566465_50.
5
6
Atlas-based segmentation of pathological MR brain images using a model of lesion growth.
IEEE Trans Med Imaging. 2004 Oct;23(10):1301-14. doi: 10.1109/TMI.2004.834618.
7
Computer-assisted imaging to assess brain structure in healthy and diseased brains.
Lancet Neurol. 2003 Feb;2(2):79-88. doi: 10.1016/s1474-4422(03)00304-1.
8
HAMMER: hierarchical attribute matching mechanism for elastic registration.
IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39. doi: 10.1109/TMI.2002.803111.
9
A unified statistical approach to deformation-based morphometry.
Neuroimage. 2001 Sep;14(3):595-606. doi: 10.1006/nimg.2001.0862.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验