Suppr超能文献

图像驱动的生物物理肿瘤生长模型校准

IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL CALIBRATION.

作者信息

Scheufele Klaudius, Subramanian Shashank, Mang Andreas, Biros George, Mehl Miriam

机构信息

Institut for Parallel and Distributed Systems, Universität Stuttgart, Universitätsstraße 38, 70569, Stuttgart, Germany.

Oden Institute for Computational Engineering and Sciences, University of Austin, 201 E. 24th Street, Austin, TX 78712-1229.

出版信息

SIAM J Sci Comput. 2020;42(3):B549-B580. doi: 10.1137/19M1275280. Epub 2020 May 6.

Abstract

We present a novel formulation for the calibration of a biophysical tumor growth model from a single-time snapshot, multiparametric magnetic resonance imaging (MRI) scan of a glioblastoma patient. Tumor growth models are typically nonlinear parabolic partial differential equations (PDEs). Thus, we have to generate a second snapshot to be able to extract significant information from a single patient snapshot. We create this two-snapshot scenario as follows. We use an atlas (an average of several scans of healthy individuals) as a substitute for an earlier, pretumor, MRI scan of the patient. Then, using the patient scan and the atlas, we combine image-registration algorithms and parameter estimation algorithms to achieve a better estimate of the healthy patient scan and the tumor growth parameters that are consistent with the data. Our scheme is based on our recent work (Scheufele et al., to appear), but we apply a different and novel scheme where the tumor growth simulation in contrast to the previous work is executed in the patient brain domain and not in the atlas domain yielding more meaningful patient-specific results. As a basis, we use a PDE-constrained optimization framework. We derive a modified Picard-iteration-type solution strategy in which we alternate between registration and tumor parameter estimation in a new way. In addition, we consider an sparsity constraint on the initial condition for the tumor and integrate it with the new joint inversion scheme. We solve the sub-problems with a reduced space, inexact Gauss-Newton-Krylov/quasi-Newton method. We present results using real brain data with synthetic tumor data that show that the new scheme reconstructs the tumor parameters in a more accurate and reliable way compared to our earlier scheme.

摘要

我们提出了一种新颖的方法,用于从胶质母细胞瘤患者的单次多参数磁共振成像(MRI)扫描快照中校准生物物理肿瘤生长模型。肿瘤生长模型通常是非线性抛物型偏微分方程(PDEs)。因此,我们必须生成第二个快照,以便能够从单个患者快照中提取重要信息。我们按以下方式创建这种双快照场景。我们使用图谱(健康个体多次扫描的平均值)来替代患者更早的肿瘤前MRI扫描。然后,利用患者扫描数据和图谱,我们结合图像配准算法和参数估计算法,以更好地估计健康患者扫描数据以及与数据一致的肿瘤生长参数。我们的方案基于我们最近的工作(Scheufele等人,即将发表),但我们应用了一种不同的新颖方案,与之前的工作相比,肿瘤生长模拟是在患者脑域而非图谱域中执行,从而产生更有意义的患者特异性结果。作为基础,我们使用一个受PDE约束的优化框架。我们推导了一种改进的皮卡迭代型求解策略,其中我们以一种新的方式在配准和肿瘤参数估计之间交替。此外,我们考虑对肿瘤初始条件的稀疏性约束,并将其与新的联合反演方案相结合。我们使用降维空间、不精确的高斯 - 牛顿 - 克里洛夫/拟牛顿方法来解决子问题。我们展示了使用真实脑数据和合成肿瘤数据的结果,表明与我们早期的方案相比,新方案能以更准确、更可靠的方式重建肿瘤参数。

相似文献

1
IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL CALIBRATION.
SIAM J Sci Comput. 2020;42(3):B549-B580. doi: 10.1137/19M1275280. Epub 2020 May 6.
2
WHERE DID THE TUMOR START? AN INVERSE SOLVER WITH SPARSE LOCALIZATION FOR TUMOR GROWTH MODELS.
Inverse Probl. 2020 Apr;36(4). doi: 10.1088/1361-6420/ab649c. Epub 2020 Feb 26.
3
Coupling brain-tumor biophysical models and diffeomorphic image registration.
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.
4
An Inexact Newton-Krylov Algorithm for Constrained Diffeomorphic Image Registration.
SIAM J Imaging Sci. 2015;8(2):1030-1069. doi: 10.1137/140984002. Epub 2015 May 5.
5
A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2017;39(6):B1064-B1101. doi: 10.1137/16M1070475. Epub 2017 Nov 21.
6
Multiatlas Calibration of Biophysical Brain Tumor Growth Models with Mass Effect.
Med Image Comput Comput Assist Interv. 2020 Oct;12262:551-560. doi: 10.1007/978-3-030-59713-9_53. Epub 2020 Sep 29.
7
Fully Automatic Calibration of Tumor-Growth Models Using a Single mpMRI Scan.
IEEE Trans Med Imaging. 2021 Jan;40(1):193-204. doi: 10.1109/TMI.2020.3024264. Epub 2020 Dec 29.
9
CLAIRE: A DISTRIBUTED-MEMORY SOLVER FOR CONSTRAINED LARGE DEFORMATION DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2019;41(5):C548-C584. doi: 10.1137/18m1207818. Epub 2019 Oct 24.

引用本文的文献

1
Inverse Problem Regularization for 3D Multi-Species Tumor Growth Models.
Int J Numer Method Biomed Eng. 2025 Jul;41(7):e70057. doi: 10.1002/cnm.70057.
5
CLAIRE: Constrained Large Deformation Diffeomorphic Image Registration on Parallel Computing Architectures.
J Open Source Softw. 2021;6(61). doi: 10.21105/joss.03038. Epub 2021 May 30.
6
Integrated Biophysical Modeling and Image Analysis: Application to Neuro-Oncology.
Annu Rev Biomed Eng. 2020 Jun 4;22:309-341. doi: 10.1146/annurev-bioeng-062117-121105.

本文引用的文献

1
CLAIRE: A DISTRIBUTED-MEMORY SOLVER FOR CONSTRAINED LARGE DEFORMATION DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2019;41(5):C548-C584. doi: 10.1137/18m1207818. Epub 2019 Oct 24.
2
WHERE DID THE TUMOR START? AN INVERSE SOLVER WITH SPARSE LOCALIZATION FOR TUMOR GROWTH MODELS.
Inverse Probl. 2020 Apr;36(4). doi: 10.1088/1361-6420/ab649c. Epub 2020 Feb 26.
3
Coupling brain-tumor biophysical models and diffeomorphic image registration.
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.
4
The Direction of Tumour Growth in Glioblastoma Patients.
Sci Rep. 2018 Jan 19;8(1):1199. doi: 10.1038/s41598-018-19420-z.
5
Selection and Validation of Predictive Models of Radiation Effects on Tumor Growth Based on Noninvasive Imaging Data.
Comput Methods Appl Mech Eng. 2017 Dec 1;327:277-305. doi: 10.1016/j.cma.2017.08.009. Epub 2017 Aug 18.
6
A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2017;39(6):B1064-B1101. doi: 10.1137/16M1070475. Epub 2017 Nov 21.
7
Constrained -regularization schemes for diffeomorphic image registration.
SIAM J Imaging Sci. 2016;9(3):1154-1194. doi: 10.1137/15M1010919. Epub 2016 Aug 30.
8
Selection, calibration, and validation of models of tumor growth.
Math Models Methods Appl Sci. 2016 Nov;26(12):2341-2368. doi: 10.1142/S021820251650055X. Epub 2016 Oct 3.
10
Personalized Radiotherapy Planning Based on a Computational Tumor Growth Model.
IEEE Trans Med Imaging. 2017 Mar;36(3):815-825. doi: 10.1109/TMI.2016.2626443. Epub 2016 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验