Suppr超能文献

层状硅酸盐和金属表面上烷基链的堆积密度与热转变之间的关系。

Relation between packing density and thermal transitions of alkyl chains on layered silicate and metal surfaces.

作者信息

Heinz Hendrik, Vaia R A, Farmer B L

机构信息

Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433, USA.

出版信息

Langmuir. 2008 Apr 15;24(8):3727-33. doi: 10.1021/la703019e. Epub 2008 Mar 12.

Abstract

Self-assembled layers of alkyl chains grafted onto the surfaces of layered silicates, metal, and oxidic nanoparticles are utilized to control interactions with external media by tuning the packing density of the chains on the surface, head group functionality, and chain length. Characterization through experiment and simulation shows that the orientation of the alkyl layers and reversible phase transitions on heating are a function of the cross-sectional area of the alkyl chains in relation to the available surface area per alkyl chain. On even surfaces, a packing density less than 0.2 leads to nearly parallel orientation of the alkyl chains on the surface, a high degree of conformational disorder, and no reversible melting transitions. A packing density between 0.2 and 0.75 leads to intermediate inclination angles, semicrystalline order, and reversible melting transitions on heating. A packing density above 0.75 results in nearly vertical alignment of the surfactants on the surface, a high degree of crystalline character, and absence of reversible melting transitions. Curved surfaces can be understood by the same principle, taking into account a local radius of curvature and a distance-dependent packing density on the surface. In good approximation, this simple model is independent from the length of the alkyl chains (a minimum length of C10 is required to form sufficiently distinctive patterns), the chemical nature of the surface, and of the surfactant head group. These structural details primarily determine the functionality of alkyl modified surfaces and the temperature of thermal transitions.

摘要

接枝到层状硅酸盐、金属和氧化物纳米颗粒表面的烷基链自组装层,可通过调节表面链的堆积密度、头基官能团和链长来控制与外部介质的相互作用。通过实验和模拟表征表明,烷基层的取向以及加热时的可逆相变是烷基链横截面积与每个烷基链可用表面积之比的函数。在平整表面上,堆积密度小于0.2会导致烷基链在表面上近乎平行排列,构象无序度高,且无可逆熔化转变。堆积密度在0.2至0.75之间会导致中间倾斜角、半结晶有序度以及加热时的可逆熔化转变。堆积密度高于0.75会导致表面活性剂在表面上近乎垂直排列,结晶度高,且无可逆熔化转变。考虑到局部曲率半径和表面上与距离相关的堆积密度,弯曲表面也可依据同一原理来理解。大致而言,这个简单模型与烷基链的长度(形成足够独特图案需要至少C10的长度)、表面的化学性质以及表面活性剂头基无关。这些结构细节主要决定了烷基修饰表面的功能以及热转变温度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验