Suppr超能文献

荧光量子点在共聚焦、多光子和电子显微镜成像中的应用。

The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging.

作者信息

Deerinck Thomas J

机构信息

National Center of Microscopy and Imaging Research (NCMIR), Center for Research on Biological Systems, University of California, San Diego (UCSD) School of Medicine, 1000 BSB, 9500 Gilman Drive, MC0608, La Jolla, CA 92093-0608, USA.

出版信息

Toxicol Pathol. 2008 Jan;36(1):112-6. doi: 10.1177/0192623307310950.

Abstract

Fluorescent quantum dots are emerging as an important tool for imaging cells and tissues, and their unique optical and physical properties have captured the attention of the research community. The most common types of commercially available quantum dots consist of a nanocrystalline semiconductor core composed of cadmium selenide with a zinc sulfide capping layer and an outer polymer layer to facilitate conjugation to targeting biomolecules such as immunoglobulins. They exhibit high fluorescent quantum yields and have large absorption cross-sections, possess excellent photostability, and can be synthesized so that their narrow-band fluorescence emission can occur in a wide spectrum of colors. These properties make them excellent candidates for serving as multiplexing molecular beacons using a variety of imaging modalities including highly correlated microscopies. Whereas much attention has been focused on quantum-dot applications for live-cell imaging, we have sought to characterize and exploit their utility for enabling simultaneous multiprotein immunolabeling in fixed cells and tissues. Considerations for their application to immunolabeling for correlated light and electron microscopic analysis are discussed.

摘要

荧光量子点正成为细胞和组织成像的重要工具,其独特的光学和物理特性引起了研究界的关注。市售最常见类型的量子点由纳米晶半导体核组成,该核由硒化镉构成,并带有硫化锌包覆层和外层聚合物层,以促进与免疫球蛋白等靶向生物分子的结合。它们具有高荧光量子产率,吸收截面大,具有出色的光稳定性,并且可以合成,使其窄带荧光发射能出现在广泛的颜色光谱中。这些特性使其成为使用包括高度相关显微镜在内的各种成像方式的多重分子信标的理想选择。尽管人们大多关注量子点在活细胞成像中的应用,但我们试图表征并利用它们在固定细胞和组织中实现同时多蛋白免疫标记的效用。文中讨论了将其应用于相关光镜和电镜分析的免疫标记时的注意事项。

相似文献

1
2
Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots.
Mod Pathol. 2006 Sep;19(9):1181-91. doi: 10.1038/modpathol.3800628. Epub 2006 Jun 16.
3
Water-soluble quantum dots for multiphoton fluorescence imaging in vivo.
Science. 2003 May 30;300(5624):1434-6. doi: 10.1126/science.1083780.
4
Semiconductor quantum dots for in vivo imaging.
J Nanosci Nanotechnol. 2007 Aug;7(8):2567-81. doi: 10.1166/jnn.2007.628.
5
Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates.
Methods Mol Biol. 2005;303:35-50. doi: 10.1385/1-59259-901-X:035.
7
Bioconjugated quantum dots for in vivo molecular and cellular imaging.
Adv Drug Deliv Rev. 2008 Aug 17;60(11):1226-1240. doi: 10.1016/j.addr.2008.03.015. Epub 2008 Apr 10.
8
Peptide-conjugated quantum dots: imaging the angiotensin type 1 receptor in living cells.
Methods Mol Biol. 2005;303:51-60. doi: 10.1385/1-59259-901-X:051.
9
Quantum dots: heralding a brighter future for clinical diagnostics.
Nanomedicine (Lond). 2012 Nov;7(11):1755-69. doi: 10.2217/nnm.12.147.

引用本文的文献

1
Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.
Discov Nano. 2025 Sep 8;20(1):154. doi: 10.1186/s11671-025-04346-z.
2
Imaging lipid rafts reveals the principle of ApoE4-induced Aβ upregulation in human neurons.
iScience. 2025 Jan 25;28(2):111893. doi: 10.1016/j.isci.2025.111893. eCollection 2025 Feb 21.
3
Advanced Immunomodulatory Biomaterials for Therapeutic Applications.
Adv Healthc Mater. 2025 Feb;14(5):e2304496. doi: 10.1002/adhm.202304496. Epub 2024 May 21.
4
Light-Driven Energy and Charge Transfer Processes between Additives within Electrospun Nanofibres.
Molecules. 2023 Jun 19;28(12):4857. doi: 10.3390/molecules28124857.
8
EGFR Expression in HER2-Driven Breast Cancer Cells.
Int J Mol Sci. 2020 Nov 27;21(23):9008. doi: 10.3390/ijms21239008.
10
Towards robust and versatile single nanoparticle fiducial markers for correlative light and electron microscopy.
J Microsc. 2019 Apr;274(1):13-22. doi: 10.1111/jmi.12778. Epub 2019 Jan 16.

本文引用的文献

1
Quantum dots for molecular pathology: their time has arrived.
J Mol Diagn. 2007 Feb;9(1):7-11. doi: 10.2353/jmoldx.2007.060186.
2
Light and electron microscopic localization of multiple proteins using quantum dots.
Methods Mol Biol. 2007;374:43-53. doi: 10.1385/1-59745-369-2:43.
3
Breeding and building molecules to spy on cells and tumors.
Keio J Med. 2006 Dec;55(4):127-40. doi: 10.2302/kjm.55.127.
4
Imaging intracellular fluorescent proteins at nanometer resolution.
Science. 2006 Sep 15;313(5793):1642-5. doi: 10.1126/science.1127344. Epub 2006 Aug 10.
5
The fluorescent toolbox for assessing protein location and function.
Science. 2006 Apr 14;312(5771):217-24. doi: 10.1126/science.1124618.
8
Nonlinear magic: multiphoton microscopy in the biosciences.
Nat Biotechnol. 2003 Nov;21(11):1369-77. doi: 10.1038/nbt899.
9
Luminescent quantum dots for multiplexed biological detection and imaging.
Curr Opin Biotechnol. 2002 Feb;13(1):40-6. doi: 10.1016/s0958-1669(02)00282-3.
10
Transmission electron microscopy of semiconductor quantum dots.
J Microsc. 2000 Aug;199 (Pt 2):130-40. doi: 10.1046/j.1365-2818.2000.00729.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验