Hanawa Naoko, Shinohara Mie, Saberi Behnam, Gaarde William A, Han Derick, Kaplowitz Neil
University of Southern California Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-912, USA.
J Biol Chem. 2008 May 16;283(20):13565-77. doi: 10.1074/jbc.M708916200. Epub 2008 Mar 12.
Previously, we demonstrated JNK plays a central role in acetaminophen (APAP)-induced liver injury (Gunawan, B. K., Liu, Z. X., Han, D., Hanawa, N., Gaarde, W. A., and Kaplowitz, N. (2006) Gastroenterology 131, 165-178). In this study, we examine the mechanism involved in activating JNK and explore the downstream targets of JNK important in promoting APAP-induced liver injury in vivo. JNK inhibitor (SP600125) was observed to significantly protect against APAP-induced liver injury. Increased mitochondria-derived reactive oxygen species were implicated in APAP-induced JNK activation based on the following: 1) mitochondrial GSH depletion (maximal at 2 h) caused increased H2O2 release from mitochondria, which preceded JNK activation (maximal at 4 h); 2) treatment of isolated hepatocytes with H2O2 or inhibitors (e.g. antimycin) that cause increased H2O2 release from mitochondria-activated JNK. An important downstream target of JNK following activation was mitochondria based on the following: 1) JNK translocated to mitochondria following activation; 2) JNK inhibitor treatment partially protected against a decline in mitochondria respiration caused by APAP treatment; and 3) addition of purified active JNK to mitochondria isolated from mice treated with APAP plus JNK inhibitor (mitochondria with severe GSH depletion, covalent binding) directly inhibited respiration. Cyclosporin A blocked the inhibitory effect of JNK on mitochondria respiration, suggesting JNK was directly inducing mitochondrial permeability transition in isolated mitochondria from mice treated with APAP plus JNK inhibitor. Addition of JNK to mitochondria isolated from control mice did not affect respiration. Our results suggests that APAP-induced liver injury involves JNK activation, due to increased reactive oxygen species generated by GSH-depleted mitochondria, and translocation of activated JNK to mitochondria where JNK induces mitochondrial permeability transition and inhibits mitochondria bioenergetics.
此前,我们证明了JNK在对乙酰氨基酚(APAP)诱导的肝损伤中起核心作用(Gunawan, B. K., Liu, Z. X., Han, D., Hanawa, N., Gaarde, W. A., and Kaplowitz, N. (2006) Gastroenterology 131, 165 - 178)。在本研究中,我们研究了激活JNK的机制,并探索了JNK在促进体内APAP诱导的肝损伤中重要的下游靶点。观察到JNK抑制剂(SP600125)可显著预防APAP诱导的肝损伤。基于以下几点,线粒体衍生的活性氧增加与APAP诱导的JNK激活有关:1)线粒体谷胱甘肽耗竭(在2小时时达到最大值)导致线粒体H2O2释放增加,这先于JNK激活(在4小时时达到最大值);2)用H2O2或导致线粒体H2O2释放增加的抑制剂(如抗霉素)处理分离的肝细胞可激活JNK。激活后JNK的一个重要下游靶点是线粒体,基于以下几点:1)激活后JNK易位至线粒体;2)JNK抑制剂处理可部分预防APAP处理引起的线粒体呼吸下降;3)将纯化的活性JNK添加到用APAP加JNK抑制剂处理的小鼠分离的线粒体中(线粒体有严重的谷胱甘肽耗竭、共价结合)直接抑制呼吸。环孢素A阻断了JNK对线粒体呼吸的抑制作用,表明JNK直接诱导了用APAP加JNK抑制剂处理的小鼠分离线粒体中的线粒体通透性转换。将JNK添加到从对照小鼠分离的线粒体中不影响呼吸。我们的结果表明,APAP诱导的肝损伤涉及JNK激活,这是由于谷胱甘肽耗竭的线粒体产生的活性氧增加,以及激活的JNK易位至线粒体,在那里JNK诱导线粒体通透性转换并抑制线粒体生物能量学。