Suppr超能文献

优化序列轮廓的大小,以提高由轮廓-轮廓算法生成的蛋白质序列比对的准确性。

Optimizing the size of the sequence profiles to increase the accuracy of protein sequence alignments generated by profile-profile algorithms.

作者信息

Poleksic Aleksandar, Fienup Mark

机构信息

Department of Computer Science, University of Northern Iowa, Cedar Falls, IA 50614, USA.

出版信息

Bioinformatics. 2008 May 1;24(9):1145-53. doi: 10.1093/bioinformatics/btn097. Epub 2008 Mar 12.

Abstract

MOTIVATION

Profile-based protein homology detection algorithms are valuable tools in genome annotation and protein classification. By utilizing information present in the sequences of homologous proteins, profile-based methods are often able to detect extremely weak relationships between protein sequences, as evidenced by the large-scale benchmarking experiments such as CASP and LiveBench.

RESULTS

We study the relationship between the sensitivity of a profile-profile method and the size of the sequence profile, which is defined as the average number of different residue types observed at the profile's positions. We also demonstrate that improvements in the sensitivity of a profile-profile method can be made by incorporating a profile-dependent scoring scheme, such as position-specific background frequencies. The techniques presented in this article are implemented in an alignment algorithm UNI-FOLD. When tested against other well-established methods for fold recognition, UNI-FOLD shows increased sensitivity and specificity in detecting remote relationships between protein sequences.

AVAILABILITY

UNI-FOLD web server can be accessed at http://blackhawk.cs.uni.edu

摘要

动机

基于轮廓的蛋白质同源性检测算法是基因组注释和蛋白质分类中的重要工具。通过利用同源蛋白质序列中存在的信息,基于轮廓的方法通常能够检测到蛋白质序列之间极其微弱的关系,如CASP和LiveBench等大规模基准测试实验所证明的那样。

结果

我们研究了轮廓-轮廓方法的灵敏度与序列轮廓大小之间的关系,序列轮廓大小定义为在轮廓位置观察到的不同残基类型的平均数量。我们还证明,通过纳入依赖于轮廓的评分方案,如位置特异性背景频率,可以提高轮廓-轮廓方法的灵敏度。本文提出的技术在比对算法UNI-FOLD中得以实现。当与其他成熟的折叠识别方法进行测试比较时,UNI-FOLD在检测蛋白质序列之间的远程关系时表现出更高的灵敏度和特异性。

可用性

可通过http://blackhawk.cs.uni.edu访问UNI-FOLD网络服务器。

相似文献

1
Optimizing the size of the sequence profiles to increase the accuracy of protein sequence alignments generated by profile-profile algorithms.
Bioinformatics. 2008 May 1;24(9):1145-53. doi: 10.1093/bioinformatics/btn097. Epub 2008 Mar 12.
2
A comparison of scoring functions for protein sequence profile alignment.
Bioinformatics. 2004 May 22;20(8):1301-8. doi: 10.1093/bioinformatics/bth090. Epub 2004 Feb 12.
3
PROMALS: towards accurate multiple sequence alignments of distantly related proteins.
Bioinformatics. 2007 Apr 1;23(7):802-8. doi: 10.1093/bioinformatics/btm017. Epub 2007 Jan 31.
4
Quasi-consensus-based comparison of profile hidden Markov models for protein sequences.
Bioinformatics. 2005 May 15;21(10):2287-93. doi: 10.1093/bioinformatics/bti374. Epub 2005 Mar 29.
5
On the quality of tree-based protein classification.
Bioinformatics. 2005 May 1;21(9):1876-90. doi: 10.1093/bioinformatics/bti244. Epub 2005 Jan 12.
6
Incremental window-based protein sequence alignment algorithms.
Bioinformatics. 2007 Jan 15;23(2):e17-23. doi: 10.1093/bioinformatics/btl297.
9
HMM-Kalign: a tool for generating sub-optimal HMM alignments.
Bioinformatics. 2007 Nov 15;23(22):3095-7. doi: 10.1093/bioinformatics/btm492. Epub 2007 Oct 6.
10
FAST: a novel protein structure alignment algorithm.
Proteins. 2005 Feb 15;58(3):618-27. doi: 10.1002/prot.20331.

引用本文的文献

1
Incorporation of local structural preference potential improves fold recognition.
PLoS One. 2011 Feb 18;6(2):e17215. doi: 10.1371/journal.pone.0017215.
2
Island method for estimating the statistical significance of profile-profile alignment scores.
BMC Bioinformatics. 2009 Apr 20;10:112. doi: 10.1186/1471-2105-10-112.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验