Tarafa Gemma, Tuck David, Ladner Daniela, Topazian Mark, Brand Randall, Deters Carolyn, Moreno Victor, Capella Gabriel, Lynch Henry, Lizardi Paul, Costa Jose
Departments of Pathology and Internal Medicine/Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4306-11. doi: 10.1073/pnas.0708250105. Epub 2008 Mar 12.
Considering carcinogenesis as a microevolutionary process, best described in the context of metapopulation dynamics, provides the basis for theoretical and empirical studies that indicate it is possible to estimate the relative contribution of genetic instability and selection to the process of tumor formation. We show that mutational load distribution analysis (MLDA) of DNA found in pancreatic fluids yields biometrics that reflect the interplay of instability, selection, accident, and gene function that determines the eventual emergence of a tumor. An in silico simulation of carcinogenesis indicates that MLDA may be a suitable tool for early detection of pancreatic cancer. We also present evidence indicating that, when performed serially in individuals harboring a p16 germ-line mutation bestowing a high risk for pancreatic cancer, MLDA may be an effective tool for the longitudinal assessment of risk and early detection of pancreatic cancer.
将致癌作用视为一个微观进化过程,在集合种群动态的背景下能得到最佳描述,这为理论和实证研究提供了基础,这些研究表明有可能估计基因不稳定和选择对肿瘤形成过程的相对贡献。我们表明,对胰液中发现的DNA进行突变负荷分布分析(MLDA)可产生生物特征,这些特征反映了决定肿瘤最终出现的不稳定、选择、偶然因素和基因功能之间的相互作用。致癌作用的计算机模拟表明,MLDA可能是早期检测胰腺癌的合适工具。我们还提供了证据表明,当对携带赋予胰腺癌高风险的p16种系突变的个体进行连续检测时,MLDA可能是纵向评估风险和早期检测胰腺癌有效性的工具。