Suppr超能文献

转化生长因子-β刺激的心内膜细胞转化依赖于Par6c对RhoA的调控。

Transforming growth factor-beta-stimulated endocardial cell transformation is dependent on Par6c regulation of RhoA.

作者信息

Townsend Todd A, Wrana Jeffrey L, Davis George E, Barnett Joey V

机构信息

Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA.

出版信息

J Biol Chem. 2008 May 16;283(20):13834-41. doi: 10.1074/jbc.M710607200. Epub 2008 Mar 14.

Abstract

Valvular heart disease due to congenital abnormalities or pathology is a major cause of mortality and morbidity. Understanding the cellular processes and molecules that regulate valve formation and remodeling is required to develop effective therapies. In the developing heart, epithelial-mesenchymal transformation (EMT) in a subpopulation of endocardial cells in the atrioventricular cushion (AVC) is an important step in valve formation. Transforming growth factor-beta (TGFbeta) has been shown to be an important regulator of AVC endocardial cell EMT in vitro and mesenchymal cell differentiation in vivo. Recently Par6c (Par6) has been shown to function downstream of TGFbeta to recruit Smurf1, an E3 ubiquitin ligase, which targets RhoA for degradation to control apical-basal polarity and tight junction dissolution. We tested the hypothesis that Par6 functions in a pathway that regulates endocardial cell EMT. Here we show that the Type I TGFbeta receptor ALK5 is required for endocardial cell EMT. Overexpression of dominant negative Par6 inhibits EMT in AVC endocardial cells, whereas overexpression of wild-type Par6 in normally non-transforming ventricular endocardial cells results in EMT. Overexpression of Smurf1 in ventricular endocardial cells induces EMT. Decreasing RhoA activity using dominant negative RhoA or small interfering RNA in ventricular endocardial cells also increases EMT, whereas overexpression of constitutively active RhoA in AVC endothelial cells blocks EMT. Manipulation of Rac1 or Cdc42 activity is without effect. These data demonstrate a functional role for Par6/Smurf1/RhoA in regulating EMT in endocardial cells.

摘要

由先天性异常或病理状况导致的心脏瓣膜病是死亡率和发病率的主要原因。要开发有效的治疗方法,就需要了解调节瓣膜形成和重塑的细胞过程及分子。在发育中的心脏里,房室垫(AVC)中一部分心内膜细胞发生上皮-间质转化(EMT)是瓣膜形成的重要步骤。已表明转化生长因子-β(TGFβ)在体外是AVC心内膜细胞EMT的重要调节因子,在体内是间充质细胞分化的重要调节因子。最近研究显示,Par6c(Par6)在TGFβ下游发挥作用,募集E3泛素连接酶Smurf1,后者以RhoA为靶点进行降解,从而控制顶-基极性和紧密连接的溶解。我们检验了Par6在调节心内膜细胞EMT的信号通路中发挥作用这一假说。在此我们表明,I型TGFβ受体ALK5是心内膜细胞EMT所必需的。显性负性Par6的过表达抑制AVC心内膜细胞的EMT,而在正常情况下不发生转化的心室心内膜细胞中过表达野生型Par6则会导致EMT。在心室心内膜细胞中过表达Smurf1可诱导EMT。在心室心内膜细胞中使用显性负性RhoA或小干扰RNA降低RhoA活性也会增加EMT,而在AVC内皮细胞中过表达组成型活性RhoA则会阻断EMT。对Rac1或Cdc42活性的操控没有效果。这些数据证明了Par6/Smurf1/RhoA在调节心内膜细胞EMT中的功能作用。

相似文献

1
Transforming growth factor-beta-stimulated endocardial cell transformation is dependent on Par6c regulation of RhoA.
J Biol Chem. 2008 May 16;283(20):13834-41. doi: 10.1074/jbc.M710607200. Epub 2008 Mar 14.
2
TGFβ and BMP-2 regulate epicardial cell invasion via TGFβR3 activation of the Par6/Smurf1/RhoA pathway.
Cell Signal. 2012 Feb;24(2):539-548. doi: 10.1016/j.cellsig.2011.10.006. Epub 2011 Oct 14.
3
BMP-2 and TGFβ2 shared pathways regulate endocardial cell transformation.
Cells Tissues Organs. 2011;194(1):1-12. doi: 10.1159/000322035. Epub 2011 Jan 7.
4
Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity.
Science. 2005 Mar 11;307(5715):1603-9. doi: 10.1126/science.1105718.
5
Functional BMP receptor in endocardial cells is required in atrioventricular cushion mesenchymal cell formation in chick.
Dev Biol. 2007 Jun 1;306(1):179-92. doi: 10.1016/j.ydbio.2007.03.015. Epub 2007 Mar 16.
7
Endocardial cell epithelial-mesenchymal transformation requires Type III TGFβ receptor interaction with GIPC.
Cell Signal. 2012 Jan;24(1):247-56. doi: 10.1016/j.cellsig.2011.09.006. Epub 2011 Sep 14.
10
Yap1 is required for endothelial to mesenchymal transition of the atrioventricular cushion.
J Biol Chem. 2014 Jul 4;289(27):18681-92. doi: 10.1074/jbc.M114.554584. Epub 2014 May 15.

引用本文的文献

1
The molecular mechanisms of cardiac development and related diseases.
Signal Transduct Target Ther. 2024 Dec 23;9(1):368. doi: 10.1038/s41392-024-02069-8.
4
SMURF1, a promoter of tumor cell progression?
Cancer Gene Ther. 2021 Jun;28(6):551-565. doi: 10.1038/s41417-020-00255-8. Epub 2020 Nov 17.
6
Regulation of spermatid polarity by the actin- and microtubule (MT)-based cytoskeletons.
Semin Cell Dev Biol. 2018 Sep;81:88-96. doi: 10.1016/j.semcdb.2018.01.013. Epub 2018 Jul 12.
7
Mechanotransduction Mechanisms in Mitral Valve Physiology and Disease Pathogenesis.
Front Cardiovasc Med. 2017 Dec 22;4:83. doi: 10.3389/fcvm.2017.00083. eCollection 2017.
9
Snail homolog 1 is involved in epithelial-mesenchymal transition-like processes in human glioblastoma cells.
Oncol Lett. 2017 May;13(5):3882-3888. doi: 10.3892/ol.2017.5875. Epub 2017 Mar 17.

本文引用的文献

1
Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis.
Biochim Biophys Acta. 2008 Mar;1778(3):794-809. doi: 10.1016/j.bbamem.2007.09.003. Epub 2007 Sep 15.
2
Involvement of Rho kinase in endothelial barrier maintenance.
Arterioscler Thromb Vasc Biol. 2007 Nov;27(11):2332-9. doi: 10.1161/ATVBAHA.107.152322. Epub 2007 Aug 30.
3
Coronary vessel development is dependent on the type III transforming growth factor beta receptor.
Circ Res. 2007 Oct 12;101(8):784-91. doi: 10.1161/CIRCRESAHA.107.152082. Epub 2007 Aug 17.
4
Endoglin and Alk5 regulate epithelial-mesenchymal transformation during cardiac valve formation.
Dev Biol. 2007 Apr 1;304(1):420-32. doi: 10.1016/j.ydbio.2006.12.038. Epub 2006 Dec 23.
7
Regulation of Par6 by extracellular signals.
Curr Opin Cell Biol. 2006 Apr;18(2):206-12. doi: 10.1016/j.ceb.2006.02.005. Epub 2006 Feb 20.
8
Degradation of RhoA by Smurf1 ubiquitin ligase.
Methods Enzymol. 2006;406:437-47. doi: 10.1016/S0076-6879(06)06032-0.
10
Rho GTPases: biochemistry and biology.
Annu Rev Cell Dev Biol. 2005;21:247-69. doi: 10.1146/annurev.cellbio.21.020604.150721.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验