Suppr超能文献

利用结构(MRI/CT)和功能数据集的协同多分辨率分析进行PET图像去噪。

PET image denoising using a synergistic multiresolution analysis of structural (MRI/CT) and functional datasets.

作者信息

Turkheimer Federico E, Boussion Nicolas, Anderson Alexander N, Pavese Nicola, Piccini Paola, Visvikis Dimitris

机构信息

Department of Clinical Neuroscience, Division of Neuroscience and Mental Health, Imperial College, London, United Kingdom.

出版信息

J Nucl Med. 2008 Apr;49(4):657-66. doi: 10.2967/jnumed.107.041871. Epub 2008 Mar 14.

Abstract

UNLABELLED

PET allows the imaging of functional properties of the living tissue, whereas other modalities (CT, MRI) provide structural information at significantly higher resolution and better image quality. Constraints for injected radioactivity, technologic limitations of current instrumentation, and inherent spatial uncertainties on the decaying process affect the quality of PET images. In this article we illustrate how structural information of matched anatomic images can be used in a multiresolution model to enhance the signal-to-noise ratio of PET images. The model states a flexible relation between function and structure in the brain and replaces high-resolution information of PET images with appropriately scaled MRI or CT local detail. The method can be naturally extended to other functional imaging modalities (SPECT, functional MRI).

METHODS

The methodology is based on the multiresolution property of the wavelet transform (WT). First, the coregistered structural image (MRI/CT) is downgraded to the resolution of the PET volume through appropriate filtering. Second, a redundant version of the WT is applied to both volumes. Third, a linear model is applied to the set of local coefficients of both image volumes and resulting parameters are recorded. The overall set of linear coefficients is then modeled as a mixture of multivariate gaussian distributions and fitted through a k-means algorithm. Finally, the local wavelet coefficients of the PET image are substituted by the corresponding values of the MRI/CT set calibrated according to the resulting clustering. The methodology was validated on digital simulated images and clinical data to evaluate its quantitative potential for individual as well as group analysis.

RESULTS

Application to real and simulated datasets shows very effective noise reduction (15% SD) while resolution is preserved.

CONCLUSION

The methodology is robust to errors in the coregistration parameters, practical to implement, and computationally fast.

摘要

未标注

正电子发射断层扫描(PET)可对活体组织的功能特性进行成像,而其他模态(计算机断层扫描(CT)、磁共振成像(MRI))能以显著更高的分辨率和更好的图像质量提供结构信息。注入放射性的限制、当前仪器的技术局限性以及衰变过程中固有的空间不确定性都会影响PET图像的质量。在本文中,我们阐述了如何在多分辨率模型中使用匹配的解剖图像的结构信息来提高PET图像的信噪比。该模型阐述了大脑中功能与结构之间的灵活关系,并用适当缩放的MRI或CT局部细节替代PET图像的高分辨率信息。该方法可自然扩展到其他功能成像模态(单光子发射计算机断层扫描(SPECT)、功能磁共振成像)。

方法

该方法基于小波变换(WT)的多分辨率特性。首先,通过适当滤波将配准的结构图像(MRI/CT)降级到PET体积的分辨率。其次,将WT的冗余版本应用于两个体积。第三,将线性模型应用于两个图像体积的局部系数集,并记录结果参数。然后将整个线性系数集建模为多元高斯分布的混合,并通过k均值算法进行拟合。最后,根据聚类结果对PET图像的局部小波系数用MRI/CT集的相应校准值进行替换。该方法在数字模拟图像和临床数据上进行了验证,以评估其在个体和群体分析方面的定量潜力。

结果

应用于真实和模拟数据集显示,在保留分辨率的同时,降噪效果非常显著(标准差降低15%)。

结论

该方法对配准参数误差具有鲁棒性,易于实现且计算速度快。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验