Suppr超能文献

一种用于药物发现的系统生物学方法。

A systems biology approach to drug discovery.

作者信息

Zhu Jun, Zhang Bin, Schadt Eric E

机构信息

Rosetta Inpharmatics, LLC, a wholly owned subsidiary of Merck and Co. Inc., Seattle, WA 98109, USA.

出版信息

Adv Genet. 2008;60:603-35. doi: 10.1016/S0065-2660(07)00421-X.

Abstract

Common human diseases like obesity and diabetes are driven by complex networks of genes and any number of environmental factors. To understand this complexity in hopes of identifying targets and developing drugs against disease, a systematic approach is required to elucidate the genetic and environmental factors and interactions among and between these factors, and to establish how these factors induce changes in gene networks that in turn lead to disease. The explosion of large-scale, high-throughput technologies in the biological sciences has enabled researchers to take a more systems biology approach to study complex traits like disease. Genotyping of hundreds of thousands of DNA markers and profiling tens of thousands of molecular phenotypes simultaneously in thousands of individuals is now possible, and this scale of data is making it possible for the first time to reconstruct whole gene networks associated with disease. In the following sections, we review different approaches for integrating genetic expression and clinical data to infer causal relationships among gene expression traits and between expression and disease traits. We further review methods to integrate these data in a more comprehensive manner to identify common pathways shared by the causal factors driving disease, including the reconstruction of association and probabilistic causal networks. Particular attention is paid to integrating diverse information to refine these types of networks so that they are more predictive. To highlight these different approaches in practice, we step through an example on how Insig2 was identified as a causal factor for plasma cholesterol levels in mice.

摘要

肥胖和糖尿病等常见人类疾病是由复杂的基因网络以及多种环境因素驱动的。为了理解这种复杂性,以期确定疾病靶点并开发治疗药物,需要一种系统的方法来阐明遗传和环境因素以及这些因素之间的相互作用,并确定这些因素如何诱导基因网络发生变化,进而导致疾病。生物科学中大规模、高通量技术的迅猛发展,使研究人员能够采用更系统的生物学方法来研究诸如疾病等复杂性状。现在有可能在数千名个体中同时对数十万DNA标记进行基因分型,并对数万个分子表型进行分析,这种规模的数据首次使得重建与疾病相关的完整基因网络成为可能。在以下各节中,我们将回顾整合基因表达和临床数据以推断基因表达性状之间以及表达与疾病性状之间因果关系的不同方法。我们还将进一步回顾以更全面的方式整合这些数据以识别驱动疾病的因果因素所共有的共同途径的方法,包括关联网络和概率因果网络的重建。我们特别关注整合各种信息以完善这类网络,使其更具预测性。为了在实际中突出这些不同方法,我们将逐步介绍一个关于如何将Insig2鉴定为小鼠血浆胆固醇水平因果因素的例子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验