Suppr超能文献

系统遗传学在心脏疾病中的机制发现

Systems Genetics for Mechanistic Discovery in Heart Diseases.

机构信息

From the Departments of Anesthesiology (C.D.R., Y.W.), David Geffen School of Medicine, University of California, Los Angeles.

Medicine (C.D.R., Y.W.), David Geffen School of Medicine, University of California, Los Angeles.

出版信息

Circ Res. 2020 Jun 5;126(12):1795-1815. doi: 10.1161/CIRCRESAHA.119.315863. Epub 2020 Jun 4.

Abstract

Cardiovascular diseases are the leading cause of death worldwide. Complex diseases with highly heterogenous disease progression among patient populations, cardiovascular diseases feature multifactorial contributions from both genetic and environmental stressors. Despite significant effort utilizing multiple approaches from molecular biology to genome-wide association studies, the genetic landscape of cardiovascular diseases, particularly for the nonfamilial forms of heart failure, is still poorly understood. In the past decade, systems-level approaches based on omics technologies have become an important approach for the study of complex traits in large populations. These advances create opportunities to integrate genetic variation with other biological layers to identify and prioritize candidate genes, understand pathogenic pathways, and elucidate gene-gene and gene-environment interactions. In this review, we will highlight some of the recent progress made using systems genetics approaches to uncover novel mechanisms and molecular bases of cardiovascular pathophysiological manifestations. The key technology and data analysis platforms necessary to implement systems genetics will be described, and the current major challenges and future directions will also be discussed. For complex cardiovascular diseases, such as heart failure, systems genetics represents a powerful strategy to obtain mechanistic insights and to develop individualized diagnostic and therapeutic regiments, paving the way for precision cardiovascular medicine.

摘要

心血管疾病是全球范围内的主要死亡原因。这些疾病具有高度异质性的疾病进展,受到遗传和环境应激因素的多因素共同作用。尽管利用从分子生物学到全基因组关联研究的多种方法进行了大量努力,但心血管疾病的遗传景观,特别是对于非家族性心力衰竭形式,仍然知之甚少。在过去的十年中,基于组学技术的系统水平方法已成为研究大人群中复杂特征的重要方法。这些进展为整合遗传变异与其他生物学层面以识别和优先考虑候选基因、了解发病途径以及阐明基因-基因和基因-环境相互作用提供了机会。在这篇综述中,我们将重点介绍一些使用系统遗传学方法揭示心血管病理生理表现的新机制和分子基础方面的最新进展。将描述实施系统遗传学所需的关键技术和数据分析平台,还将讨论当前的主要挑战和未来方向。对于心力衰竭等复杂心血管疾病,系统遗传学代表了一种获得机制见解和开发个体化诊断和治疗方案的强大策略,为精准心血管医学铺平了道路。

相似文献

1
Systems Genetics for Mechanistic Discovery in Heart Diseases.系统遗传学在心脏疾病中的机制发现
Circ Res. 2020 Jun 5;126(12):1795-1815. doi: 10.1161/CIRCRESAHA.119.315863. Epub 2020 Jun 4.
2
Systems genetics approaches to understand complex traits.系统遗传学方法研究复杂性状。
Nat Rev Genet. 2014 Jan;15(1):34-48. doi: 10.1038/nrg3575. Epub 2013 Dec 3.
3
Systems genetics in "-omics" era: current and future development.“组学”时代的系统遗传学:现状与未来发展
Theory Biosci. 2013 Mar;132(1):1-16. doi: 10.1007/s12064-012-0168-x. Epub 2012 Nov 9.
9
Multi-omics study for interpretation of genome-wide association study.多组学研究用于解释全基因组关联研究。
J Hum Genet. 2021 Jan;66(1):3-10. doi: 10.1038/s10038-020-00842-5. Epub 2020 Sep 18.

引用本文的文献

10
Understanding the molecular basis of cardiomyopathy.了解心肌病的分子基础。
Am J Physiol Heart Circ Physiol. 2022 Feb 1;322(2):H181-H233. doi: 10.1152/ajpheart.00562.2021. Epub 2021 Nov 19.

本文引用的文献

5
Structural learning and integrative decomposition of multi-view data.多视图数据的结构学习与整合分解
Biometrics. 2019 Dec;75(4):1121-1132. doi: 10.1111/biom.13108. Epub 2019 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验