Cox J H, Bennink J R, Yewdell J W
Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892.
J Exp Med. 1991 Dec 1;174(6):1629-37. doi: 10.1084/jem.174.6.1629.
The E3/19K glycoprotein of adenovirus functions to diminish recognition of adenovirus-infected cells by major histocompatibility complex class I-restricted cytotoxic T lymphocytes (CTLs) by binding intracellular class I molecules and preventing them from reaching the plasma membrane. In the present study we have characterized the nature of the interaction between E3/19K and the H-2Kd (Kd) molecule. An E3/19K molecule genetically engineered to terminate six residues from its normal COOH terminus (delta E19), was found to associate with Kd in a manner indistinguishable from wild-type E3/19K. Unlike E3/19K, however, delta E19 was transported through the Golgi complex to the plasma membrane, where it could be detected biochemically and immunocytochemically using a monoclonal antibody specific for the lumenal domain of E3/19K. Importantly, delta E19 also differed from E3/19K in being unable to prevent the presentation of Kd-restricted viral proteins to CTLs. This is unlikely to be due to delta E19 having a lower avidity for Kd than E3/19K, since delta E19 was able to compete with E3/19K for Kd binding, both physically, and functionally in nullifying the E3/19K blockade of antigen presentation. These findings indicate that the ability of E3/19K to block antigen presentation is due solely to its ability to retain newly synthesized class I molecules in the endoplasmic reticulum.
腺病毒的E3/19K糖蛋白通过结合细胞内的I类分子并阻止它们到达质膜,来减少主要组织相容性复合体I类限制性细胞毒性T淋巴细胞(CTL)对腺病毒感染细胞的识别。在本研究中,我们已经确定了E3/19K与H-2Kd(Kd)分子之间相互作用的性质。发现一种经过基因工程改造、从其正常COOH末端终止六个残基的E3/19K分子(δE19),与Kd的结合方式与野生型E3/19K无法区分。然而,与E3/19K不同的是,δE19通过高尔基体复合体转运到质膜,在那里可以使用针对E3/19K腔结构域的单克隆抗体进行生化和免疫细胞化学检测。重要的是,δE19与E3/19K的另一个不同之处在于,它无法阻止向CTL呈递Kd限制性病毒蛋白。这不太可能是由于δE19对Kd的亲和力低于E3/19K,因为δE19能够在物理上和功能上与E3/19K竞争Kd结合,从而消除E3/19K对抗抗原呈递的阻断作用。这些发现表明,E3/19K阻断抗原呈递的能力完全归因于其将新合成的I类分子保留在内质网中的能力。