Marshall Guillermo, De la Cruz-Mesía Rolando, Quintana Fernando A, Barón Anna E
Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile.
Biometrics. 2009 Mar;65(1):69-80. doi: 10.1111/j.1541-0420.2008.01016.x. Epub 2008 Mar 24.
Multiple outcomes are often used to properly characterize an effect of interest. This article discusses model-based statistical methods for the classification of units into one of two or more groups where, for each unit, repeated measurements over time are obtained on each outcome. We relate the observed outcomes using multivariate nonlinear mixed-effects models to describe evolutions in different groups. Due to its flexibility, the random-effects approach for the joint modeling of multiple outcomes can be used to estimate population parameters for a discriminant model that classifies units into distinct predefined groups or populations. Parameter estimation is done via the expectation-maximization algorithm with a linear approximation step. We conduct a simulation study that sheds light on the effect that the linear approximation has on classification results. We present an example using data from a study in 161 pregnant women in Santiago, Chile, where the main interest is to predict normal versus abnormal pregnancy outcomes.
多个结果通常用于恰当地描述感兴趣的效应。本文讨论基于模型的统计方法,用于将个体分类为两个或更多组中的一组,其中对于每个个体,随时间对每个结果进行重复测量。我们使用多元非线性混合效应模型来关联观察到的结果,以描述不同组中的变化。由于其灵活性,用于多个结果联合建模的随机效应方法可用于估计判别模型的总体参数,该判别模型将个体分类到不同的预定义组或总体中。参数估计通过带有线性近似步骤的期望最大化算法进行。我们进行了一项模拟研究,以阐明线性近似对分类结果的影响。我们给出一个使用来自智利圣地亚哥161名孕妇研究数据的例子,其中主要兴趣是预测正常与异常的妊娠结局。