Suppr超能文献

重复测量数据分析的判别分析:综述。

Discriminant analysis for repeated measures data: a review.

机构信息

School of Public Health, University of Saskatchewan , Saskatoon, SK, Canada.

出版信息

Front Psychol. 2010 Sep 9;1:146. doi: 10.3389/fpsyg.2010.00146. eCollection 2010.

Abstract

Discriminant analysis (DA) encompasses procedures for classifying observations into groups (i.e., predictive discriminative analysis) and describing the relative importance of variables for distinguishing amongst groups (i.e., descriptive discriminative analysis). In recent years, a number of developments have occurred in DA procedures for the analysis of data from repeated measures designs. Specifically, DA procedures have been developed for repeated measures data characterized by missing observations and/or unbalanced measurement occasions, as well as high-dimensional data in which measurements are collected repeatedly on two or more variables. This paper reviews the literature on DA procedures for univariate and multivariate repeated measures data, focusing on covariance pattern and linear mixed-effects models. A numeric example illustrates their implementation using SAS software.

摘要

判别分析(DA)包括将观测值分类为组的程序(即预测判别分析),以及描述变量对区分组之间的相对重要性的程序(即描述性判别分析)。近年来,在分析重复测量设计数据的 DA 程序方面取得了一些进展。具体而言,已经为具有缺失观测值和/或不平衡测量时间的重复测量数据以及在两个或更多变量上重复收集测量值的高维数据开发了 DA 程序。本文综述了单变量和多变量重复测量数据的 DA 程序的文献,重点是协方差模式和线性混合效应模型。一个数值示例说明了使用 SAS 软件实现它们的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验