Suppr超能文献

在痴呆症的临床前诊断中,基于自适应数据驱动的生物和认知标志物序列选择。

Adaptive data-driven selection of sequences of biological and cognitive markers in pre-clinical diagnosis of dementia.

机构信息

University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.

Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.

出版信息

Sci Rep. 2023 Apr 19;13(1):6406. doi: 10.1038/s41598-023-32867-z.

Abstract

Effective clinical decision procedures must balance multiple competing objectives such as time-to-decision, acquisition costs, and accuracy. We describe and evaluate POSEIDON, a data-driven method for PrOspective SEquentIal DiagnOsis with Neutral zones to individualize clinical classifications. We evaluated the framework with an application in which the algorithm sequentially proposes to include cognitive, imaging, or molecular markers if a sufficiently more accurate prognosis of clinical decline to manifest Alzheimer's disease is expected. Over a wide range of cost parameter data-driven tuning lead to quantitatively lower total cost compared to ad hoc fixed sets of measurements. The classification accuracy based on all longitudinal data from participants that was acquired over 4.8 years on average was 0.89. The sequential algorithm selected 14 percent of available measurements and concluded after an average follow-up time of 0.74 years at the expense of 0.05 lower accuracy. Sequential classifiers were competitive from a multi-objective perspective since they could dominate fixed sets of measurements by making fewer errors using less resources. Nevertheless, the trade-off of competing objectives depends on inherently subjective prescribed cost parameters. Thus, despite the effectiveness of the method, the implementation into consequential clinical applications will remain controversial and evolve around the choice of cost parameters.

摘要

有效的临床决策程序必须平衡多个相互竞争的目标,如决策时间、获取成本和准确性。我们描述并评估了 POSEIDON,这是一种用于前瞻性序列诊断的基于数据的方法,具有中性区,可实现临床分类的个体化。我们通过一个应用程序评估了该框架,该程序通过算法连续提出包括认知、成像或分子标志物,如果预期对临床下降表现出阿尔茨海默病的预后有足够更准确的话。在广泛的成本参数数据驱动调优范围内,与固定的测量集相比,总费用定量降低。基于参与者在 4.8 年的平均时间内获得的所有纵向数据的分类准确性为 0.89。顺序算法选择了可用测量值的 14%,在平均随访时间为 0.74 年的情况下,以 0.05 的精度降低为代价得出结论。由于顺序分类器通过使用更少的资源犯更少的错误,因此从多目标的角度来看具有竞争力,因此可以通过固定的测量集进行竞争。然而,竞争目标的权衡取决于固有的主观规定的成本参数。因此,尽管该方法有效,但在 consequential 临床应用中的实施仍存在争议,并将围绕成本参数的选择展开。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba1e/10115887/1ef59abf4868/41598_2023_32867_Fig1_HTML.jpg

相似文献

7
Modelling Decline in Cognition to Decline in Function in Alzheimer's Disease.
Curr Alzheimer Res. 2020;17(7):635-657. doi: 10.2174/1567205017666201008105429.

本文引用的文献

1
Prediction of future Alzheimer's disease dementia using plasma phospho-tau combined with other accessible measures.
Nat Med. 2021 Jun;27(6):1034-1042. doi: 10.1038/s41591-021-01348-z. Epub 2021 May 24.
2
Construction, visualization and application of neutral zone classifiers.
Stat Methods Med Res. 2020 May;29(5):1420-1433. doi: 10.1177/0962280219863823. Epub 2019 Jul 18.
4
Estimating correlation between multivariate longitudinal data in the presence of heterogeneity.
BMC Med Res Methodol. 2017 Aug 17;17(1):124. doi: 10.1186/s12874-017-0398-1.
5
Maximizing the usefulness of statistical classifiers for two populations with illustrative applications.
Stat Methods Med Res. 2018 Aug;27(8):2344-2358. doi: 10.1177/0962280216680244. Epub 2016 Dec 5.
6
Dynamic longitudinal discriminant analysis using multiple longitudinal markers of different types.
Stat Methods Med Res. 2018 Jul;27(7):2060-2080. doi: 10.1177/0962280216674496. Epub 2016 Oct 26.
7
Multivariate Longitudinal Analysis with Bivariate Correlation Test.
PLoS One. 2016 Aug 18;11(8):e0159649. doi: 10.1371/journal.pone.0159649. eCollection 2016.
8
Computational neuroimaging strategies for single patient predictions.
Neuroimage. 2017 Jan 15;145(Pt B):180-199. doi: 10.1016/j.neuroimage.2016.06.038. Epub 2016 Jun 22.
9
Studying Multivariate Change Using Multilevel Models and Latent Curve Models.
Multivariate Behav Res. 1997 Jul 1;32(3):215-53. doi: 10.1207/s15327906mbr3203_1.
10
MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection.
Neuroimage. 2016 Feb 15;127:186-195. doi: 10.1016/j.neuroimage.2015.11.073. Epub 2015 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验