Vömel Matthias, Wegener Christian
Emmy Noether Neuropeptide Group, Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.
PLoS One. 2008 Mar 26;3(3):e1848. doi: 10.1371/journal.pone.0001848.
Biogenic amines are important signaling molecules in the central nervous system of both vertebrates and invertebrates. In the fruit fly Drosophila melanogaster, biogenic amines take part in the regulation of various vital physiological processes such as feeding, learning/memory, locomotion, sexual behavior, and sleep/arousal. Consequently, several morphological studies have analyzed the distribution of aminergic neurons in the CNS. Previous descriptions, however, did not determine the exact spatial location of aminergic neurite arborizations within the neuropil. The release sites and pre-/postsynaptic compartments of aminergic neurons also remained largely unidentified. We here used gal4-driven marker gene expression and immunocytochemistry to map presumed serotonergic (5-HT), dopaminergic, and tyraminergic/octopaminergic neurons in the thoracic and abdominal neuromeres of the Drosophila larval ventral ganglion relying on Fasciclin2-immunoreactive tracts as three-dimensional landmarks. With tyrosine hydroxylase- (TH) or tyrosine decarboxylase 2 (TDC2)-specific gal4-drivers, we also analyzed the distribution of ectopically expressed neuronal compartment markers in presumptive dopaminergic TH and tyraminergic/octopaminergic TDC2 neurons, respectively. Our results suggest that thoracic and abdominal 5-HT and TH neurons are exclusively interneurons whereas most TDC2 neurons are efferent. 5-HT and TH neurons are ideally positioned to integrate sensory information and to modulate neuronal transmission within the ventral ganglion, while most TDC2 neurons appear to act peripherally. In contrast to 5-HT neurons, TH and TDC2 neurons each comprise morphologically different neuron subsets with separated in- and output compartments in specific neuropil regions. The three-dimensional mapping of aminergic neurons now facilitates the identification of neuronal network contacts and co-localized signaling molecules, as exemplified for DOPA decarboxylase-synthesizing neurons that co-express crustacean cardioactive peptide and myoinhibiting peptides.
生物胺是脊椎动物和无脊椎动物中枢神经系统中重要的信号分子。在果蝇中,生物胺参与调节各种重要的生理过程,如进食、学习/记忆、运动、性行为以及睡眠/觉醒。因此,一些形态学研究分析了中枢神经系统中胺能神经元的分布。然而,先前的描述并未确定胺能神经突分支在神经纤维网内的确切空间位置。胺能神经元的释放位点以及突触前/后区室也在很大程度上尚未明确。我们在此利用gal4驱动的标记基因表达和免疫细胞化学方法,以Fasciclin2免疫反应性束作为三维地标,绘制果蝇幼虫腹神经节胸段和腹段神经节中假定的5-羟色胺能(5-HT)、多巴胺能以及酪胺能/章鱼胺能神经元的图谱。通过酪氨酸羟化酶(TH)或酪氨酸脱羧酶2(TDC2)特异性的gal4驱动子,我们还分别分析了假定的多巴胺能TH神经元和酪胺能/章鱼胺能TDC2神经元中异位表达的神经元区室标记物的分布。我们的结果表明,胸段和腹段的5-HT和TH神经元均为中间神经元,而大多数TDC2神经元是传出神经元。5-HT和TH神经元处于理想位置,可整合感觉信息并调节腹神经节内的神经元传递,而大多数TDC2神经元似乎在外周起作用。与5-HT神经元不同,TH和TDC2神经元各自包含形态不同的神经元亚群,在特定神经纤维网区域具有分离的输入和输出区室。现在,胺能神经元的三维图谱有助于识别神经元网络联系和共定位的信号分子,例如共表达甲壳类心脏活性肽和肌抑制肽的多巴脱羧酶合成神经元就是例证。