Stocker Bettina, Bochow Christina, Damrau Christine, Mathejczyk Thomas, Wolfenberg Heike, Colomb Julien, Weber Claudia, Ramesh Niraja, Duch Carsten, Biserova Natalia M, Sigrist Stephan, Pflüger Hans-Joachim
Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany.
Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany.
Front Syst Neurosci. 2018 Mar 19;12:5. doi: 10.3389/fnsys.2018.00005. eCollection 2018.
A comparison between the axon terminals of octopaminergic efferent dorsal or ventral unpaired median neurons in either desert locusts () or fruit flies () across skeletal muscles reveals many similarities. In both species the octopaminergic axon forms beaded fibers where the boutons or varicosities form type II terminals in contrast to the neuromuscular junction (NMJ) or type I terminals. These type II terminals are immunopositive for both tyramine and octopamine and, in contrast to the type I terminals, which possess clear synaptic vesicles, only contain dense core vesicles. These dense core vesicles contain octopamine as shown by immunogold methods. With respect to the cytomatrix and active zone peptides the type II terminals exhibit active zone-like accumulations of the scaffold protein Bruchpilot (BRP) only sparsely in contrast to the many accumulations of BRP identifying active zones of NMJ type I terminals. In the fruit fly larva marked dynamic changes of octopaminergic fibers have been reported after short starvation which not only affects the formation of new branches ("") but also affects the type I terminals or NMJs via octopamine-signaling (Koon et al., 2011). Our starvation experiments of -larvae revealed a time-dependency of the formation of additional branches. Whereas after 2 h of starvation we find a decrease in "", the increase is significant after 6 h of starvation. In addition, we provide evidence that the release of octopamine from dendritic and/or axonal type II terminals uses a similar synaptic machinery to glutamate release from type I terminals of excitatory motor neurons. Indeed, blocking this canonical synaptic release machinery via RNAi induced downregulation of BRP in neurons with type II terminals leads to flight performance deficits similar to those observed for octopamine mutants or flies lacking this class of neurons (Brembs et al., 2007).
对沙漠蝗虫()或果蝇()中八胺能传出背侧或腹侧不成对中间神经元的轴突终末在骨骼肌上的比较揭示了许多相似之处。在这两个物种中,八胺能轴突形成串珠状纤维,其中轴突终扣或膨体形成II型终末,这与神经肌肉接头(NMJ)或I型终末不同。这些II型终末对酪胺和八胺均呈免疫阳性,与具有清亮突触小泡的I型终末不同,它们只含有致密核心小泡。免疫金法显示这些致密核心小泡含有八胺。关于细胞基质和活性区肽,与识别NMJ I型终末活性区的许多BRP聚集物相比,II型终末仅稀疏地表现出支架蛋白bruchpilot(BRP)的活性区样聚集。在果蝇幼虫中,据报道短期饥饿后八胺能纤维有明显的动态变化,这不仅影响新分支(“”)的形成,还通过八胺信号影响I型终末或NMJ(Koon等人,2011年)。我们对-幼虫的饥饿实验揭示了额外分支形成的时间依赖性。饥饿2小时后我们发现“”减少,而饥饿6小时后增加显著。此外,我们提供证据表明,八胺从树突状和/或轴突II型终末的释放使用了与兴奋性运动神经元I型终末释放谷氨酸类似的突触机制。事实上,通过RNAi在具有II型终末的神经元中诱导BRP下调来阻断这种经典的突触释放机制,会导致飞行性能缺陷,类似于在八胺突变体或缺乏这类神经元的果蝇中观察到的情况(Brembs等人,2007年)。