Suppr超能文献

引发酶C端p16结构域的保守残基参与调节细菌引发体的活性。

Conserved residues of the C-terminal p16 domain of primase are involved in modulating the activity of the bacterial primosome.

作者信息

Chintakayala Kiran, Larson Marilynn A, Griep Mark A, Hinrichs Steven H, Soultanas Panos

机构信息

Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

出版信息

Mol Microbiol. 2008 Apr;68(2):360-71. doi: 10.1111/j.1365-2958.2008.06155.x.

Abstract

The bacterial primosome comprises the replicative homo-hexameric ring helicase DnaB and the primase DnaG. It is an integral component of the replisome as it unwinds the parental DNA duplex to allow progression of the replication fork, synthesizes the initiation primers at the replication origin, oriC, and the primers required for Okazaki fragment synthesis during lagging strand replication. The interaction between the two component proteins is mediated by a distinct C-terminal domain (p16) of the primase. Both proteins mutually regulate each other's activities and a putative network of conserved residues has been proposed to mediate these effects. We have targeted 10 residues from this network. To investigate the functional contributions of these residues to the primase, ATPase and helicase activities of the primosome, we have used site-directed mutagenesis and in vitro functional assays. Five of these residues (E464, H494, R495, Y548 and R555) exhibited some functional significance while the remaining five (E483, R484, E506, D512 and E530) exhibited no effects. E464 participates in functional modulation of the primase activity, whereas H494, R495 and R555 participate in allosteric functional modulation of the ATPase and/or helicase activities. Y548 contributes directly to the structural interaction with DnaB.

摘要

细菌引发体由复制性同六聚体环状解旋酶DnaB和引发酶DnaG组成。它是复制体的一个组成部分,因为它解开亲本DNA双链以允许复制叉前进,在复制起点oriC合成起始引物,并在滞后链复制期间合成冈崎片段合成所需的引物。两种组成蛋白之间的相互作用由引发酶独特的C末端结构域(p16)介导。两种蛋白质相互调节彼此的活性,并且已经提出了一个假定的保守残基网络来介导这些作用。我们针对了这个网络中的10个残基。为了研究这些残基对引发体的引发酶、ATP酶和解旋酶活性的功能贡献,我们使用了定点诱变和体外功能测定。其中五个残基(E464、H494、R495、Y548和R555)表现出一些功能意义,而其余五个(E483、R484、E506、D512和E530)没有影响。E464参与引发酶活性的功能调节,而H494、R495和R555参与ATP酶和/或解旋酶活性的变构功能调节。Y548直接有助于与DnaB的结构相互作用。

相似文献

2
Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase.
Science. 2007 Oct 19;318(5849):459-63. doi: 10.1126/science.1147353.
3
Allosteric regulation of the primase (DnaG) activity by the clamp-loader (tau) in vitro.
Mol Microbiol. 2009 Apr;72(2):537-49. doi: 10.1111/j.1365-2958.2009.06668.x.
5
DnaC, the indispensable companion of DnaB helicase, controls the accessibility of DnaB helicase by primase.
J Biol Chem. 2017 Dec 22;292(51):20871-20882. doi: 10.1074/jbc.M117.807644. Epub 2017 Oct 25.
6
Structure and primase-mediated activation of a bacterial dodecameric replicative helicase.
Nucleic Acids Res. 2015 Sep 30;43(17):8564-76. doi: 10.1093/nar/gkv792. Epub 2015 Aug 11.
7
Structural insights into the interaction of helicase and primase in .
Biochem J. 2018 Nov 15;475(21):3493-3509. doi: 10.1042/BCJ20180673.
8
The structure of a DnaB-family replicative helicase and its interactions with primase.
Nat Struct Mol Biol. 2008 Jan;15(1):94-100. doi: 10.1038/nsmb1356. Epub 2007 Dec 23.

引用本文的文献

1
A single helicase-binding domain of DnaG couples with hexameric helicase DnaB in .
Biophys Rep. 2025 Aug 31;11(4):283-290. doi: 10.52601/bpr.2024.240059.
2
The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery.
Antibiotics (Basel). 2018 Mar 14;7(1):23. doi: 10.3390/antibiotics7010023.
3
DnaC, the indispensable companion of DnaB helicase, controls the accessibility of DnaB helicase by primase.
J Biol Chem. 2017 Dec 22;292(51):20871-20882. doi: 10.1074/jbc.M117.807644. Epub 2017 Oct 25.
4
Identification of a Ligand-Binding Site on the Staphylococcus aureus DnaG Primase C-Terminal Domain.
Biochemistry. 2017 Feb 21;56(7):932-943. doi: 10.1021/acs.biochem.6b01273. Epub 2017 Feb 9.
5
Crystal structure and mode of helicase binding of the C-terminal domain of primase from Helicobacter pylori.
J Bacteriol. 2013 Jun;195(12):2826-38. doi: 10.1128/JB.00091-13. Epub 2013 Apr 12.
7
Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target.
Curr Drug Targets. 2012 Mar;13(3):352-72. doi: 10.2174/138945012799424598.
10
Allosteric regulation of the primase (DnaG) activity by the clamp-loader (tau) in vitro.
Mol Microbiol. 2009 Apr;72(2):537-49. doi: 10.1111/j.1365-2958.2009.06668.x.

本文引用的文献

1
Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase.
Science. 2007 Oct 19;318(5849):459-63. doi: 10.1126/science.1147353.
2
DNA replication initiation: mechanisms and regulation in bacteria.
Nat Rev Microbiol. 2007 May;5(5):343-54. doi: 10.1038/nrmicro1640.
3
4
Monomeric solution structure of the helicase-binding domain of Escherichia coli DnaG primase.
FEBS J. 2006 Nov;273(21):4997-5009. doi: 10.1111/j.1742-4658.2006.05495.x. Epub 2006 Sep 28.
6
DNA primase acts as a molecular brake in DNA replication.
Nature. 2006 Feb 2;439(7076):621-4. doi: 10.1038/nature04317.
8
Crosstalk between primase subunits can act to regulate primer synthesis in trans.
Mol Cell. 2005 Nov 11;20(3):391-401. doi: 10.1016/j.molcel.2005.09.004.
9
Cellular DNA replicases: components and dynamics at the replication fork.
Annu Rev Biochem. 2005;74:283-315. doi: 10.1146/annurev.biochem.73.011303.073859.
10
The bacterial helicase-primase interaction: a common structural/functional module.
Structure. 2005 Jun;13(6):839-44. doi: 10.1016/j.str.2005.04.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验