Weber Michael, Henkel Sebastian G, Vlaic Sebastian, Guthke Reinhard, van Zoelen Everardus J, Driesch Dominik
Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.
BMC Syst Biol. 2013 Jan 2;7:1. doi: 10.1186/1752-0509-7-1.
Inference of gene-regulatory networks (GRNs) is important for understanding behaviour and potential treatment of biological systems. Knowledge about GRNs gained from transcriptome analysis can be increased by multiple experiments and/or multiple stimuli. Since GRNs are complex and dynamical, appropriate methods and algorithms are needed for constructing models describing these dynamics. Algorithms based on heuristic approaches reduce the effort in parameter identification and computation time.
The NetGenerator V2.0 algorithm, a heuristic for network inference, is proposed and described. It automatically generates a system of differential equations modelling structure and dynamics of the network based on time-resolved gene expression data. In contrast to a previous version, the inference considers multi-stimuli multi-experiment data and contains different methods for integrating prior knowledge. The resulting significant changes in the algorithmic procedures are explained in detail. NetGenerator is applied to relevant benchmark examples evaluating the inference for data from experiments with different stimuli. Also, the underlying GRN of chondrogenic differentiation, a real-world multi-stimulus problem, is inferred and analysed.
NetGenerator is able to determine the structure and parameters of GRNs and their dynamics. The new features of the algorithm extend the range of possible experimental set-ups, results and biological interpretations. Based upon benchmarks, the algorithm provides good results in terms of specificity, sensitivity, efficiency and model fit.
基因调控网络(GRN)的推断对于理解生物系统的行为和潜在治疗方法至关重要。通过多次实验和/或多种刺激,可以增加从转录组分析中获得的关于GRN的知识。由于GRN是复杂且动态的,因此需要适当的方法和算法来构建描述这些动态的模型。基于启发式方法的算法减少了参数识别的工作量和计算时间。
提出并描述了NetGenerator V2.0算法,这是一种用于网络推断的启发式算法。它基于时间分辨基因表达数据自动生成一个微分方程系统,对网络的结构和动态进行建模。与先前版本相比,该推断考虑了多刺激多实验数据,并包含了整合先验知识的不同方法。详细解释了算法过程中由此产生的重大变化。NetGenerator应用于相关基准示例,评估对来自不同刺激实验数据的推断。此外,还对软骨生成分化这一实际多刺激问题的潜在GRN进行了推断和分析。
NetGenerator能够确定GRN的结构、参数及其动态。该算法的新特性扩展了可能的实验设置、结果和生物学解释的范围。基于基准测试,该算法在特异性、敏感性、效率和模型拟合方面都取得了良好的结果。