Suppr超能文献

嘌呤能机制在胃肠动力控制中的作用。

Purinergic mechanisms in the control of gastrointestinal motility.

机构信息

Department of Physiology, University of Melbourne, Parkville, VIC, 3010, Australia,

出版信息

Purinergic Signal. 2008 Sep;4(3):197-212. doi: 10.1007/s11302-007-9081-z. Epub 2007 Oct 6.

Abstract

For many years, ATP and adenosine have been implicated in movement regulation of the gastrointestinal tract. They act through three major receptor subtypes: adenosine or P1 receptors, P2X receptors and P2Y receptors. Each of these major receptor types can be subdivided into several different classes and is widely distributed amongst various neurons, muscle types, glia and interstitial cells that regulate intestinal functions. Several key roles for the different receptors and their endogenous ligands have been identified in physiological and pharmacological studies. For example, adenosine acting at A(1) receptors appears to inhibit intestinal motility in various pathological conditions. Similarly, ATP acting at P2Y receptors is an important component of inhibitory neuromuscular transmission, acting as a cotransmitter with nitric oxide. ATP acting at P2X and P2Y(1) receptors is important for synaptic transmission in simple descending excitatory and inhibitory reflex pathways. Some P2Y receptor subtypes prefer uridine nucleotides over purine nucleotides. Thus, roles for UTP and UDP as enteric transmitters in place of ATP cannot be excluded. ATP also appears to be important for sensory transduction, especially in chemosensitive pathways that initiate local inhibitory reflexes. Despite this evidence, data are lacking about the roles of either adenosine or ATP in more complex motility patterns such as segmentation or the interdigestive migrating motor complex. Clarification of roles for purinergic transmission in these common, but understudied, motility patterns will depend on the use of subtype-specific antagonists that in some cases have not yet been developed.

摘要

多年来,ATP 和腺苷一直被认为与胃肠道的运动调节有关。它们通过三种主要的受体亚型发挥作用:腺苷或 P1 受体、P2X 受体和 P2Y 受体。这些主要受体类型中的每一种都可以进一步细分为几个不同的类别,广泛分布于调节肠道功能的各种神经元、肌肉类型、神经胶质细胞和间质细胞中。在生理和药理学研究中,已经确定了不同受体及其内源性配体的几个关键作用。例如,在各种病理条件下,作用于 A(1)受体的腺苷似乎抑制肠道蠕动。同样,作用于 P2Y 受体的 ATP 是抑制性神经肌肉传递的重要组成部分,作为一氧化氮的共递质起作用。作用于 P2X 和 P2Y(1)受体的 ATP 对于简单下行兴奋性和抑制性反射途径中的突触传递很重要。一些 P2Y 受体亚型更喜欢尿嘧啶核苷酸而不是嘌呤核苷酸。因此,不能排除 UTP 和 UDP 作为替代 ATP 的肠内递质的作用。ATP 似乎也对感觉转导很重要,特别是在启动局部抑制性反射的化学敏感途径中。尽管有这些证据,但关于腺苷或 ATP 在更复杂的运动模式(如分段或消化间期移行性运动复合波)中的作用的数据仍然缺乏。阐明嘌呤能传递在这些常见但研究不足的运动模式中的作用将取决于使用尚未开发的某些情况下的特定亚型拮抗剂。

相似文献

1
Purinergic mechanisms in the control of gastrointestinal motility.
Purinergic Signal. 2008 Sep;4(3):197-212. doi: 10.1007/s11302-007-9081-z. Epub 2007 Oct 6.
2
P2 receptors in the murine gastrointestinal tract.
Neuropharmacology. 2002 Dec;43(8):1313-23. doi: 10.1016/s0028-3908(02)00294-0.
3
Purinergic receptors and gastrointestinal secretomotor function.
Purinergic Signal. 2008 Sep;4(3):213-36. doi: 10.1007/s11302-008-9104-4. Epub 2008 Jul 5.
4
Purinergic transmission in blood vessels.
Auton Neurosci. 2015 Sep;191:48-66. doi: 10.1016/j.autneu.2015.04.007. Epub 2015 Apr 25.
5
Purinergic signaling negatively regulates activity of an olfactory receptor in an odorant-dependent manner.
Neuroscience. 2014 Sep 5;275:89-101. doi: 10.1016/j.neuroscience.2014.05.055. Epub 2014 Jun 10.
6
Postnatal development of P2 receptors in the murine gastrointestinal tract.
Neuropharmacology. 2006 May;50(6):690-704. doi: 10.1016/j.neuropharm.2005.11.015. Epub 2006 Jan 23.
8
Osteoblast responses to nucleotides increase during differentiation.
Bone. 2006 Aug;39(2):300-9. doi: 10.1016/j.bone.2006.02.063. Epub 2006 Apr 17.
10
P2Y receptors: focus on structural, pharmacological and functional aspects in the brain.
Curr Med Chem. 2007;14(23):2429-55. doi: 10.2174/092986707782023695.

引用本文的文献

4
Nutraceuticals and Enteric Glial Cells.
Molecules. 2021 Jun 21;26(12):3762. doi: 10.3390/molecules26123762.
5
Nitric Oxide Is Essential for Generating the Minute Rhythm Contraction Pattern in the Small Intestine, Likely via ICC-DMP.
Front Neurosci. 2021 Jan 7;14:592664. doi: 10.3389/fnins.2020.592664. eCollection 2020.
6
Burnstock and the legacy of the inhibitory junction potential and P2Y1 receptors.
Purinergic Signal. 2021 Mar;17(1):25-31. doi: 10.1007/s11302-020-09747-6. Epub 2020 Oct 30.
7
Stomach 'tastes' the food and adjusts its emptying: A neurophysiological hypothesis (Review).
Exp Ther Med. 2020 Sep;20(3):2392-2395. doi: 10.3892/etm.2020.8874. Epub 2020 Jun 11.
10
Anti-inflammatory Effect of Somatostatin Analogue Octreotide on Rheumatoid Arthritis Synoviocytes.
Inflammation. 2018 Oct;41(5):1648-1660. doi: 10.1007/s10753-018-0808-5.

本文引用的文献

2
Purinergic receptors and gastrointestinal secretomotor function.
Purinergic Signal. 2008 Sep;4(3):213-36. doi: 10.1007/s11302-008-9104-4. Epub 2008 Jul 5.
3
Purinergic receptors and synaptic transmission in enteric neurons.
Purinergic Signal. 2008 Sep;4(3):255-66. doi: 10.1007/s11302-007-9088-5. Epub 2007 Dec 8.
4
Local inhibitory reflexes excited by mucosal application of nutrient amino acids in guinea pig jejunum.
Am J Physiol Gastrointest Liver Physiol. 2007 Jun;292(6):G1660-70. doi: 10.1152/ajpgi.00580.2006. Epub 2007 Mar 8.
5
Mapping 5-HT inputs to enteric neurons of the guinea-pig small intestine.
Neuroscience. 2007 Mar 16;145(2):556-67. doi: 10.1016/j.neuroscience.2006.12.017. Epub 2007 Jan 29.
6
Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine.
Am J Physiol Gastrointest Liver Physiol. 2007 Apr;292(4):G1162-72. doi: 10.1152/ajpgi.00441.2006. Epub 2007 Jan 11.
7
The movements and innervation of the small intestine.
J Physiol. 1899 May 11;24(2):99-143. doi: 10.1113/jphysiol.1899.sp000752.
9
Synaptic communication between neurons and NG2+ cells.
Curr Opin Neurobiol. 2006 Oct;16(5):515-21. doi: 10.1016/j.conb.2006.08.009. Epub 2006 Sep 8.
10
Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine.
Am J Physiol Cell Physiol. 2007 Jan;292(1):C497-507. doi: 10.1152/ajpcell.00147.2006. Epub 2006 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验