Suppr超能文献

幽门螺杆菌中的修复和抗修复DNA解旋酶

Repair and antirepair DNA helicases in Helicobacter pylori.

作者信息

Kang Josephine, Blaser Martin J

机构信息

Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.

出版信息

J Bacteriol. 2008 Jun;190(12):4218-24. doi: 10.1128/JB.01848-07. Epub 2008 Mar 28.

Abstract

Orthologs of RecG and RuvABC are highly conserved among prokaryotes; in Escherichia coli, they participate in independent pathways that branch migrate Holliday junctions during recombinational DNA repair. RecG also has been shown to directly convert stalled replication forks into Holliday junctions. The bacterium Helicobacter pylori, with remarkably high levels of recombination, possesses RecG and RuvABC homologs, but in contrast to E. coli, H. pylori RecG limits recombinational repair. We now show that the RuvABC pathway plays the prominent, if not exclusive, repair role. By introducing an E. coli resolvase (RusA) into H. pylori, the repair and recombination phenotypes of the ruvB mutant but not the recG mutant were improved. Our results indicate that RecG and RuvB compete for Holliday junction structures in recombinational repair, but since a classic RecG resolvase is absent from H. pylori, deployment of the RecG pathway is lethal. We propose that evolutionary loss of the H. pylori RecG resolvase provides an "antirepair" pathway allowing for selection of varied strains. Such competition between repair and antirepair provides a novel mechanism to maximize fitness at a bacterial population level.

摘要

RecG和RuvABC的直系同源基因在原核生物中高度保守;在大肠杆菌中,它们参与在重组DNA修复过程中对霍利迪连接体进行分支迁移的独立途径。RecG也已被证明能直接将停滞的复制叉转化为霍利迪连接体。幽门螺杆菌这种细菌具有非常高的重组水平,拥有RecG和RuvABC的同源物,但与大肠杆菌不同的是,幽门螺杆菌的RecG会限制重组修复。我们现在表明,RuvABC途径发挥着突出的(如果不是唯一的)修复作用。通过将一种大肠杆菌解离酶(RusA)引入幽门螺杆菌,ruvB突变体而非recG突变体的修复和重组表型得到了改善。我们的结果表明,在重组修复中,RecG和RuvB竞争霍利迪连接体结构,但由于幽门螺杆菌中不存在经典的RecG解离酶,RecG途径的发挥是致命的。我们提出,幽门螺杆菌RecG解离酶的进化缺失提供了一种“抗修复”途径,从而允许选择不同的菌株。这种修复与抗修复之间的竞争提供了一种在细菌群体水平上使适应性最大化的新机制。

相似文献

1
Repair and antirepair DNA helicases in Helicobacter pylori.
J Bacteriol. 2008 Jun;190(12):4218-24. doi: 10.1128/JB.01848-07. Epub 2008 Mar 28.
3
Effect of host species on recG phenotypes in Helicobacter pylori and Escherichia coli.
J Bacteriol. 2004 Nov;186(22):7704-13. doi: 10.1128/JB.186.22.7704-7713.2004.
4
Substrate specificity of RusA resolvase reveals the DNA structures targeted by RuvAB and RecG in vivo.
Mol Cell. 2002 Jul;10(1):187-98. doi: 10.1016/s1097-2765(02)00560-9.
5
Genetic analysis of an archaeal Holliday junction resolvase in Escherichia coli.
J Mol Biol. 2001 Jul 13;310(3):577-89. doi: 10.1006/jmbi.2001.4791.
6
Implication of RuvABC and RecG in homologous recombination in Streptomyces ambofaciens.
Res Microbiol. 2017 Jan;168(1):26-35. doi: 10.1016/j.resmic.2016.07.003. Epub 2016 Jul 15.
10
Analysis of RuvABC and RecG involvement in the escherichia coli response to the covalent topoisomerase-DNA complex.
J Bacteriol. 2010 Sep;192(17):4445-51. doi: 10.1128/JB.00350-10. Epub 2010 Jul 2.

引用本文的文献

1
DisA Limits RecG Activities at Stalled or Reversed Replication Forks.
Cells. 2021 May 31;10(6):1357. doi: 10.3390/cells10061357.
3
The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery.
Crit Rev Biochem Mol Biol. 2012 Nov-Dec;47(6):531-55. doi: 10.3109/10409238.2012.729562. Epub 2012 Oct 9.
4
DprB facilitates inter- and intragenomic recombination in Helicobacter pylori.
J Bacteriol. 2012 Aug;194(15):3891-903. doi: 10.1128/JB.00346-12. Epub 2012 May 18.
5
Xer recombinase and genome integrity in Helicobacter pylori, a pathogen without topoisomerase IV.
PLoS One. 2012;7(4):e33310. doi: 10.1371/journal.pone.0033310. Epub 2012 Apr 12.
6
Biochemical and cellular characterization of Helicobacter pylori RecA, a protein with high-level constitutive expression.
J Bacteriol. 2011 Dec;193(23):6490-7. doi: 10.1128/JB.05646-11. Epub 2011 Sep 23.
7
Recombination and DNA repair in Helicobacter pylori.
Annu Rev Microbiol. 2011;65:329-48. doi: 10.1146/annurev-micro-090110-102931.
10
Repeat-associated plasticity in the Helicobacter pylori RD gene family.
J Bacteriol. 2009 Nov;191(22):6900-10. doi: 10.1128/JB.00706-09. Epub 2009 Sep 11.

本文引用的文献

2
Helicobacter pylori evolution and phenotypic diversification in a changing host.
Nat Rev Microbiol. 2007 Jun;5(6):441-52. doi: 10.1038/nrmicro1658.
3
A paradigm for direct stress-induced mutation in prokaryotes.
FASEB J. 2006 Dec;20(14):2476-85. doi: 10.1096/fj.06-6209com.
5
Antimutator role of the DNA glycosylase mutY gene in Helicobacter pylori.
J Bacteriol. 2006 Sep;188(17):6224-34. doi: 10.1128/JB.00477-06.
6
UvrD helicase suppresses recombination and DNA damage-induced deletions.
J Bacteriol. 2006 Aug;188(15):5450-9. doi: 10.1128/JB.00275-06.
7
The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression.
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9999-10004. doi: 10.1073/pnas.0603784103. Epub 2006 Jun 20.
8
Molecular analysis of the bacterial microbiota in the human stomach.
Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):732-7. doi: 10.1073/pnas.0506655103. Epub 2006 Jan 4.
9
Comparative and evolutionary analysis of the bacterial homologous recombination systems.
PLoS Genet. 2005 Aug;1(2):e15. doi: 10.1371/journal.pgen.0010015. Epub 2005 Aug 26.
10
Structural and functional divergence of MutS2 from bacterial MutS1 and eukaryotic MSH4-MSH5 homologs.
J Bacteriol. 2005 May;187(10):3528-37. doi: 10.1128/JB.187.10.3528-3537.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验