Suppr超能文献

作为离子通道理论测试案例的合成纳米孔:无单通道填充时的异常摩尔分数效应

Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing.

作者信息

Gillespie Dirk, Boda Dezso, He Yan, Apel Pavel, Siwy Zuzanna S

机构信息

Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.

出版信息

Biophys J. 2008 Jul;95(2):609-19. doi: 10.1529/biophysj.107.127985. Epub 2008 Apr 4.

Abstract

The predictions of a theory for the anomalous mole fraction effect (AMFE) are tested experimentally with synthetic nanopores in plastic. The negatively charged synthetic nanopores under consideration are highly cation selective and 50 A in diameter at their smallest point. These pores exhibit an AMFE in mixtures of Ca(2+) and monovalent cations. An AMFE occurs when the conductance through a pore is lower in a mixture of salts than in the pure salts at the same concentration. For ion channels, the textbook interpretation of the AMFE is that multiple ions move through the pore in coordinated, single-file motion. However, because the synthetic nanopores are so wide, their AMFE shows that single filing is not necessary for the AMFE. It is shown that the AMFE in the synthetic nanopores is explained by a theory of preferential ion selectivity. The unique properties of the synthetic nanopores allow us to experimentally confirm several predictions of this theory. These same properties make synthetic nanopores an interesting new platform to test theories of ion channel permeation and selectivity in general.

摘要

利用塑料中的合成纳米孔对一种关于反常摩尔分数效应(AMFE)的理论预测进行了实验验证。所考虑的带负电荷的合成纳米孔具有高度的阳离子选择性,其最小直径为50埃。这些孔在Ca(2+)和单价阳离子的混合物中表现出反常摩尔分数效应。当通过孔的电导率在盐混合物中低于相同浓度下的纯盐时,就会出现反常摩尔分数效应。对于离子通道,反常摩尔分数效应的教科书式解释是多个离子以协同的单列运动方式穿过孔。然而,由于合成纳米孔很宽,它们的反常摩尔分数效应表明单列运动对于反常摩尔分数效应并非必要条件。结果表明,合成纳米孔中的反常摩尔分数效应可以用优先离子选择性理论来解释。合成纳米孔的独特性质使我们能够通过实验证实该理论的几个预测。这些相同的性质使合成纳米孔成为一个有趣的新平台,可用于一般地测试离子通道渗透和选择性理论。

相似文献

1
Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing.
Biophys J. 2008 Jul;95(2):609-19. doi: 10.1529/biophysj.107.127985. Epub 2008 Apr 4.
2
The anomalous mole fraction effect in calcium channels: a measure of preferential selectivity.
Biophys J. 2008 Sep 15;95(6):2658-72. doi: 10.1529/biophysj.107.127977. Epub 2008 May 30.
3
Anomalous mole fraction effect, electrostatics, and binding in ionic channels.
Biophys J. 1998 May;74(5):2327-34. doi: 10.1016/S0006-3495(98)77942-1.
4
Reinterpreting the anomalous mole fraction effect: the ryanodine receptor case study.
Biophys J. 2009 Oct 21;97(8):2212-21. doi: 10.1016/j.bpj.2009.08.009.
5
Voltage-gated calcium channels: direct observation of the anomalous mole fraction effect at the single-channel level.
Proc Natl Acad Sci U S A. 1989 Jul;86(13):5207-11. doi: 10.1073/pnas.86.13.5207.
8
Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na(+) and K(+).
ACS Nano. 2013 Nov 26;7(11):10148-57. doi: 10.1021/nn4043628. Epub 2013 Oct 25.
9
Biomimetic Nanocones that Enable High Ion Permselectivity.
Angew Chem Int Ed Engl. 2019 Sep 2;58(36):12646-12654. doi: 10.1002/anie.201905972. Epub 2019 Aug 2.
10
Molecular simulation studies of hydrophobic gating in nanopores and ion channels.
Biochem Soc Trans. 2015 Apr;43(2):146-50. doi: 10.1042/BST20140256.

引用本文的文献

2
The mixture effect on ionic selectivity and permeability of nanotubes.
Nanoscale Adv. 2020 Apr 21;2(9):3834-3840. doi: 10.1039/d0na00089b. eCollection 2020 Sep 16.
3
Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment.
Phys Rep. 2021 Jul 25;921:1-53. doi: 10.1016/j.physrep.2021.03.003. Epub 2021 Mar 24.
4
Modeling the Device Behavior of Biological and Synthetic Nanopores with Reduced Models.
Entropy (Basel). 2020 Nov 5;22(11):1259. doi: 10.3390/e22111259.
5
Fabrication of Nanochannels.
Materials (Basel). 2015 Sep 17;8(9):6277-6308. doi: 10.3390/ma8095304.
6
Ion selectivity of graphene nanopores.
Nat Commun. 2016 Apr 22;7:11408. doi: 10.1038/ncomms11408.
7
Interacting ions in biophysics: real is not ideal.
Biophys J. 2013 May 7;104(9):1849-66. doi: 10.1016/j.bpj.2013.03.049.
9
Modeling and simulation of ion channels.
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.
10
Slowing down DNA translocation through a nanopore in lithium chloride.
Nano Lett. 2012 Feb 8;12(2):1038-44. doi: 10.1021/nl204273h. Epub 2012 Jan 27.

本文引用的文献

2
Nanoprecipitation-assisted ion current oscillations.
Nat Nanotechnol. 2008 Jan;3(1):51-7. doi: 10.1038/nnano.2007.420. Epub 2007 Dec 23.
4
Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041202. doi: 10.1103/PhysRevE.76.041202. Epub 2007 Oct 15.
5
Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study.
Biophys J. 2008 Feb 15;94(4):1169-84. doi: 10.1529/biophysj.107.116798. Epub 2007 Oct 19.
6
Efficiency, selectivity, and robustness of nucleocytoplasmic transport.
PLoS Comput Biol. 2007 Jul;3(7):e125. doi: 10.1371/journal.pcbi.0030125.
7
Steric selectivity in Na channels arising from protein polarization and mobile side chains.
Biophys J. 2007 Sep 15;93(6):1960-80. doi: 10.1529/biophysj.107.105478. Epub 2007 May 25.
8
Combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel.
Phys Rev Lett. 2007 Apr 20;98(16):168102. doi: 10.1103/PhysRevLett.98.168102. Epub 2007 Apr 17.
9
Nanofluidic diode.
Nano Lett. 2007 Mar;7(3):552-6. doi: 10.1021/nl062924b. Epub 2007 Feb 21.
10
Calcium-induced voltage gating in single conical nanopores.
Nano Lett. 2006 Aug;6(8):1729-34. doi: 10.1021/nl061114x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验