Krupa Martin, Popović Nikola, Kopell Nancy, Rotstein Horacio G
Department of Mathematical Sciences, New Mexico State University, P.O. Box 30001, Department 3MB, Las Cruces, New Mexico 88003, USA.
Chaos. 2008 Mar;18(1):015106. doi: 10.1063/1.2779859.
Mixed-mode dynamics is a complex type of dynamical behavior that has been observed both numerically and experimentally in numerous prototypical systems in the natural sciences. The compartmental Wilson-Callaway model for the dopaminergic neuron is an example of a system that exhibits a wide variety of mixed-mode patterns upon variation of a control parameter. One characteristic feature of this system is the presence of multiple time scales. In this article, we study the Wilson-Callaway model from a geometric point of view. We show that the observed mixed-mode dynamics is caused by a slowly varying canard structure. By appropriately transforming the model equations, we reduce them to an underlying three-dimensional canonical form that can be analyzed via a slight adaptation of the approach developed by M. Krupa, N. Popovic, and N. Kopell (unpublished).
混合模式动力学是一种复杂的动力学行为类型,在自然科学的众多典型系统中,已通过数值模拟和实验观察到。多巴胺能神经元的房室Wilson - Callaway模型就是这样一个系统的例子,当控制参数变化时,它会展现出各种各样的混合模式。该系统的一个特征是存在多个时间尺度。在本文中,我们从几何角度研究Wilson - Callaway模型。我们表明,观察到的混合模式动力学是由一个缓慢变化的鸭结构引起的。通过适当地变换模型方程,我们将它们简化为一个潜在的三维标准形式,该形式可以通过对M. Krupa、N. Popovic和N. Kopell(未发表)所开发方法的轻微调整来进行分析。