Rubin Jonathan, Wechselberger Martin
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
Chaos. 2008 Mar;18(1):015105. doi: 10.1063/1.2789564.
In recent work [J. Rubin and M. Wechselberger, Biol. Cybern. 97, 5 (2007)], we explained the appearance of remarkably slow oscillations in the classical Hodgkin-Huxley (HH) equations, modified by scaling a time constant, using recently developed theory about mixed-mode oscillations (MMOs). This theory is only rigorously valid, however, for epsilon sufficiently small, where epsilon is a parameter that arises from nondimensionalization of the HH system. Here, we illustrate how the parameter regime over which MMOs exist, and the features of the MMO patterns within this regime, vary with respect to several key parameters in the nondimensionalized HH equations, including epsilon. Moreover, we explain our findings in terms of the effects that these parameters are expected to have on certain organizing structures within the corresponding flow, generalized from analysis done previously in the singular limit.
在最近的工作中[J. 鲁宾和M. 韦尔施贝格尔,《生物控制论》97, 5 (2007)],我们利用最近发展的关于混合模式振荡(MMO)的理论,解释了通过缩放一个时间常数而修改的经典霍奇金 - 赫胥黎(HH)方程中显著缓慢振荡的出现。然而,该理论仅在ε足够小的情况下严格有效,其中ε是从HH系统无量纲化中产生的一个参数。在此,我们说明了MMO存在的参数范围,以及该范围内MMO模式的特征如何随无量纲化HH方程中的几个关键参数(包括ε)而变化。此外,我们根据这些参数预期对相应流内某些组织结构产生的影响来解释我们的发现,这些影响是从先前在奇异极限下所做的分析推广而来的。