Suppr超能文献

相似文献

1
Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon.
Appl Environ Microbiol. 2008 May;74(10):3099-104. doi: 10.1128/AEM.00305-08. Epub 2008 Mar 31.
2
Characterization of DNA primase complex isolated from the archaeon, Thermococcus kodakaraensis.
J Biol Chem. 2012 May 11;287(20):16209-19. doi: 10.1074/jbc.M111.338145. Epub 2012 Feb 17.
4
The Fur iron regulator-like protein is cryptic in the hyperthermophilic archaeon Thermococcus kodakaraensis.
FEMS Microbiol Lett. 2009 Jun;295(1):117-28. doi: 10.1111/j.1574-6968.2009.01594.x.
5
TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro.
J Mol Biol. 2007 Mar 23;367(2):344-57. doi: 10.1016/j.jmb.2006.12.069. Epub 2006 Dec 30.
6
Replication protein A complex in Thermococcus kodakarensis interacts with DNA polymerases and helps their effective strand synthesis.
Biosci Biotechnol Biochem. 2019 Apr;83(4):695-704. doi: 10.1080/09168451.2018.1559722. Epub 2018 Dec 22.

引用本文的文献

1
5'-untranslated region sequences enhance plasmid-based protein production in .
Front Microbiol. 2024 Nov 25;15:1443342. doi: 10.3389/fmicb.2024.1443342. eCollection 2024.
2
A self-transmissible plasmid from a hyperthermophile that facilitates genetic modification of diverse Archaea.
Nat Microbiol. 2023 Jul;8(7):1339-1347. doi: 10.1038/s41564-023-01387-x. Epub 2023 Jun 5.
3
Biochemical and genetic examination of two aminotransferases from the hyperthermophilic archaeon .
Front Microbiol. 2023 Feb 20;14:1126218. doi: 10.3389/fmicb.2023.1126218. eCollection 2023.
4
Transformation Techniques for the Anaerobic Hyperthermophile Thermococcus kodakarensis.
Methods Mol Biol. 2022;2522:87-104. doi: 10.1007/978-1-0716-2445-6_5.
5
Progress and Challenges in Archaeal Genetic Manipulation.
Methods Mol Biol. 2022;2522:25-31. doi: 10.1007/978-1-0716-2445-6_2.
6
Thermococcus kodakarensis provides a versatile hyperthermophilic archaeal platform for protein expression.
Methods Enzymol. 2021;659:243-273. doi: 10.1016/bs.mie.2021.06.014. Epub 2021 Jul 13.
7
The Hyperthermophilic Restriction-Modification Systems of Protect Genome Integrity.
Front Microbiol. 2021 May 20;12:657356. doi: 10.3389/fmicb.2021.657356. eCollection 2021.
9
A Structurally Novel Lipoyl Synthase in the Hyperthermophilic Archaeon Thermococcus kodakarensis.
Appl Environ Microbiol. 2020 Nov 10;86(23). doi: 10.1128/AEM.01359-20.
10
High-efficiency transformation of archaea by direct PCR products with its application to directed evolution of a thermostable enzyme.
Microb Biotechnol. 2021 Mar;14(2):453-464. doi: 10.1111/1751-7915.13613. Epub 2020 Jun 29.

本文引用的文献

1
Polarity in archaeal operon transcription in Thermococcus kodakaraensis.
J Bacteriol. 2008 Mar;190(6):2244-8. doi: 10.1128/JB.01811-07. Epub 2008 Jan 11.
3
ProTISA: a comprehensive resource for translation initiation site annotation in prokaryotic genomes.
Nucleic Acids Res. 2008 Jan;36(Database issue):D114-9. doi: 10.1093/nar/gkm799. Epub 2007 Oct 16.
5
6
The rolling-circle plasmid pTN1 from the hyperthermophilic archaeon Thermococcus nautilus.
Mol Microbiol. 2007 Oct;66(2):357-70. doi: 10.1111/j.1365-2958.2007.05912.x. Epub 2007 Sep 3.
7
Archaeal type III RuBisCOs function in a pathway for AMP metabolism.
Science. 2007 Feb 16;315(5814):1003-6. doi: 10.1126/science.1135999.
8
Protein biogenesis in Archaea: addressing translation initiation using an in vitro protein synthesis system for Haloferax volcanii.
FEMS Microbiol Lett. 2007 May;270(1):34-41. doi: 10.1111/j.1574-6968.2007.00649.x. Epub 2007 Feb 5.
9
TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro.
J Mol Biol. 2007 Mar 23;367(2):344-57. doi: 10.1016/j.jmb.2006.12.069. Epub 2006 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验