Daniel W E, Cohn M
Biochemistry. 1976 Sep 7;15(18):3917-24. doi: 10.1021/bi00663a003.
The properties of Escherichia coli tRNAMet f1 and tRNAMet f3 that differ by only one base change, m7G to A at position 47, have been compared structurally by proton magnetic resonance and functionally by the aminoacylation reaction. The NMR spectra of the two tRNA species in the region between 0 and 4 ppm below 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) (methyl and methylene region) were the same except for the absence of the lowest field peak at 3.8 ppm in tRNAMet f3, thus unequivocally identifying this resonance at the methyl group of m7G47 of tRNAMet f1. The same resonance disappears in tRNAMet f1 spin-labeled at s4U8 and reappears in the diamagnetic reduced spin-labeled tRNAMet f1 from which the average distance between the spin-label and the methyl protons of m7G is estimated to be less than 15 A. The proximity of m7G47 but not T55 to s4U8 in the structure of E. coli tRNAMet f1 in solution is consistant with the crystallographic model for yeast tRNAPhe. A spectral comparison of the hydrogen-bond regions (11-14 ppm below DSS) of tRNAMet f1 and tRNAMet f3 reveals major shifts of four resonances previously assigned to tertiary hydrogen bonds. Of the four, the one at lowest field (14.8 ppm) had been assigned by chemical modification to the tertiary (s4U8-A14) hydrogen bond and the one at 13.3 ppm had been tentatively assigned to the tertiary hydrogen bond G23-m7G47 of the 13-23-47 triple. A more positive assignment of the G23-m7G47 at 13.3 ppm could be made from the additional evidence that this resonance, which was first observed in the difference spectrum between spin-labeled tRNAMet f1 and its reduced form, is the only one missing in the analogous difference spectrum of tRNAMet f3. At low ionic strength and in the absence of magnesium ions, the differences in the hydrogen-bonded region of the NMR spectra of tRNAMet f1 and tRNAMet f3 are much greater than in the presence of magnesium ions. The optimal magnesium concentration required for maximal initial velocities is also higher for tRNAMet f3 than for tRNAMet f1. The perturbation caused by the spin-label in destabilizing hydrogen bonds in the region between 13 and 14 ppm is greater for tRNAMet f3 than tRNAMet f1 but the distance relations for the hydrogen bonds in the region between 12 and 13 ppm (the major paramagnetic perturbations) are conserved in the two species. The disruption of one hydrogen bond relative to native tRNAMet f1 either by spin-labeling (s4U8-A14) or by substitution of m7G by A in tRNAMet f3 has little effect on the aminoacyl acceptor activity or the velocity of the aminoacylation reaction at optimal magnesium concentration, but the absence of both tertiary hydrogen bonds in the augmented D-helix region in the spin-labeled tRNAMet f3 results in approximately 60% reduction both in acceptance activity and in initial velocity of the aminoacylation reaction.
仅在第47位碱基上有一个碱基变化(从m7G变为A)的大肠杆菌tRNAMet f1和tRNAMet f3的特性,已通过质子磁共振进行了结构比较,并通过氨酰化反应进行了功能比较。在4,4 - 二甲基 - 4 - 硅戊烷 - 1 - 磺酸(DSS)(甲基和亚甲基区域)以下0至4 ppm区域内,两种tRNA的核磁共振谱除了tRNAMet f3中3.8 ppm处最低场峰缺失外是相同的,从而明确地将该共振确定为tRNAMet f1中m7G47甲基的共振。在s4U8处进行自旋标记的tRNAMet f1中该共振消失,而在抗磁性还原的自旋标记tRNAMet f1中重新出现,据此估计自旋标记与m7G的甲基质子之间的平均距离小于15 Å。溶液中大肠杆菌tRNAMet f1结构中m7G47而非T55与s4U8的接近程度与酵母tRNAPhe的晶体学模型一致。对tRNAMet f1和tRNAMet f3氢键区域(DSS以下11 - 14 ppm)的光谱比较揭示了先前归属于三级氢键的四个共振的主要位移。在这四个共振中,最低场(14.8 ppm)的那个共振通过化学修饰已被归属于三级(s4U8 - A14)氢键,13.3 ppm处的那个共振已被初步归属于13 - 23 - 47三联体的三级氢键G23 - m7G47。从额外的证据可以对13.3 ppm处的G23 - m7G47进行更确切的归属,该共振首先在自旋标记的tRNAMet f1与其还原形式之间的差异光谱中观察到,并且是tRNAMet f3类似差异光谱中唯一缺失的共振。在低离子强度且不存在镁离子的情况下,tRNAMet f1和tRNAMet f3核磁共振谱氢键区域的差异比存在镁离子时大得多。tRNAMet f3达到最大初始速度所需的最佳镁浓度也比tRNAMet f1高。自旋标记对13至14 ppm区域内氢键稳定性的扰动,tRNAMet f3比tRNAMet f1更大,但12至13 ppm区域内氢键的距离关系(主要的顺磁扰动)在这两个物种中是保守的。相对于天然tRNAMet f1,通过自旋标记(s4U8 - A14)或在tRNAMet f3中用A取代m7G破坏一个氢键,在最佳镁浓度下对氨酰受体活性或氨酰化反应速度几乎没有影响,但在自旋标记的tRNAMet f3中扩展的D - 螺旋区域中两个三级氢键都缺失时,氨酰化反应的接受活性和初始速度都会降低约60%。