Suppr超能文献

绘制基本控制图:给医疗从业者的教程笔记

Plotting basic control charts: tutorial notes for healthcare practitioners.

作者信息

Mohammed M A, Worthington P, Woodall W H

机构信息

Department of Public Health and Epidemiology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

出版信息

Qual Saf Health Care. 2008 Apr;17(2):137-45. doi: 10.1136/qshc.2004.012047.

Abstract

There is considerable interest in the use of statistical process control (SPC) in healthcare. Although SPC is part of an overall philosophy of continual improvement, the implementation of SPC usually requires the production of control charts. However, as SPC is relatively new to healthcare practitioners and is not routinely featured in medical statistics texts/courses, there is a need to explain the issues involved in the selection and construction of control charts in practice. Following a brief overview of SPC in healthcare and preliminary issues, we use a tutorial-based approach to illustrate the selection and construction of four commonly used control charts (xmr-chart, p-chart, u-chart, c-chart) using examples from healthcare. For each control chart, the raw data, the relevant formulae and their use and interpretation of the final SPC chart are provided together with a notes section highlighting important issues for the SPC practitioner. Some more advanced topics are also mentioned with suggestions for further reading.

摘要

医疗保健领域对统计过程控制(SPC)的应用有着浓厚兴趣。尽管SPC是持续改进整体理念的一部分,但SPC的实施通常需要绘制控制图。然而,由于SPC对医疗从业者来说相对较新,且在医学统计学教材/课程中并非常规内容,因此有必要解释在实际操作中选择和构建控制图所涉及的问题。在对医疗保健领域的SPC及初步问题进行简要概述之后,我们采用基于教程的方法,通过医疗保健领域的实例来说明四种常用控制图(均值极差控制图、不合格品率控制图、单位缺陷数控制图、缺陷数控制图)的选择和构建。对于每种控制图,我们提供了原始数据、相关公式及其使用方法,以及最终SPC图的解读,并设有注释部分,突出对SPC从业者而言的重要问题。还提及了一些更高级的主题,并给出了进一步阅读的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验