Menssen Max, Dammann Martina, Fneish Firas, Ellenberger David, Schaarschmidt Frank
Department of Biostatistics, Leibniz University Hannover, Hanover, Germany.
Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany.
Pharm Stat. 2025 Mar-Apr;24(2):e2447. doi: 10.1002/pst.2447. Epub 2024 Oct 30.
In pre-clinical and medical quality control, it is of interest to assess the stability of the process under monitoring or to validate a current observation using historical control data. Classically, this is done by the application of historical control limits (HCL) graphically displayed in control charts. In many applications, HCL are applied to count data, for example, the number of revertant colonies (Ames assay) or the number of relapses per multiple sclerosis patient. Count data may be overdispersed, can be heavily right-skewed and clusters may differ in cluster size or other baseline quantities (e.g., number of petri dishes per control group or different length of monitoring times per patient). Based on the quasi-Poisson assumption or the negative-binomial distribution, we propose prediction intervals for overdispersed count data to be used as HCL. Variable baseline quantities are accounted for by offsets. Furthermore, we provide a bootstrap calibration algorithm that accounts for the skewed distribution and achieves equal tail probabilities. Comprehensive Monte-Carlo simulations assessing the coverage probabilities of eight different methods for HCL calculation reveal, that the bootstrap calibrated prediction intervals control the type-1-error best. Heuristics traditionally used in control charts (e.g., the limits in Shewhart c- or u-charts or the mean ± 2 SD) fail to control a pre-specified coverage probability. The application of HCL is demonstrated based on data from the Ames assay and for numbers of relapses of multiple sclerosis patients. The proposed prediction intervals and the algorithm for bootstrap calibration are publicly available via the R package predint.
在临床前和医学质量控制中,评估监测过程的稳定性或使用历史对照数据验证当前观察结果是很有意义的。传统上,这是通过应用控制图中以图形方式显示的历史控制限(HCL)来完成的。在许多应用中,HCL应用于计数数据,例如,回复突变菌落数(Ames试验)或每位多发性硬化症患者的复发次数。计数数据可能过度分散,可能严重右偏,并且聚类在聚类大小或其他基线量(例如,每个对照组的培养皿数量或每位患者的不同监测时间长度)方面可能不同。基于拟泊松假设或负二项分布,我们提出了用于过度分散计数数据的预测区间,以用作HCL。可变基线量通过偏移量来考虑。此外,我们提供了一种自举校准算法,该算法考虑了偏态分布并实现了相等的尾部概率。全面的蒙特卡罗模拟评估了八种不同HCL计算方法的覆盖概率,结果表明,自举校准预测区间对I型错误的控制效果最佳。控制图中传统使用的启发式方法(例如,休哈特c图或u图中的控制限或均值±2标准差)无法控制预先指定的覆盖概率。基于Ames试验的数据以及多发性硬化症患者的复发次数展示了HCL的应用。所提出的预测区间和自举校准算法可通过R包predint公开获取。