Suppr超能文献

Tim12在体内的基本功能是由其C末端结构域的组装相互作用来确保的。

The essential function of Tim12 in vivo is ensured by the assembly interactions of its C-terminal domain.

作者信息

Lionaki Eirini, de Marcos Lousa Carine, Baud Catherine, Vougioukalaki Maria, Panayotou George, Tokatlidis Kostas

机构信息

Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 71110, Crete, Greece.

出版信息

J Biol Chem. 2008 Jun 6;283(23):15747-53. doi: 10.1074/jbc.M800350200. Epub 2008 Apr 3.

Abstract

The small Tims chaperone hydrophobic precursors across the mitochondrial intermembrane space. Tim9 and Tim10 form the soluble TIM10 complex that binds precursors exiting from the outer membrane. Tim12 functions downstream, as the only small Tim peripherally attached on the inner membrane. We show that Tim12 has an intrinsic affinity for inner mitochondrial membrane lipids, in contrast to the other small Tims. We find that the C-terminal end of Tim12 is essential in vivo. Its deletion crucially abolishes assembly of Tim12 in complexes with the other Tims. The N-terminal end contains targeting information and also mediates direct binding of Tim12 to the transmembrane segments of the carrier substrates. These results provide a molecular basis for the concept that the essential role of Tim12 relies on its unique assembly properties that allow this subunit to bridge the soluble and membrane-embedded translocases in the carrier import pathway.

摘要

小Tim蛋白护送疏水前体穿过线粒体外膜间隙。Tim9和Tim10形成可溶性TIM10复合物,该复合物结合从外膜出来的前体。Tim12在下游发挥作用,是唯一在外膜周边附着在内膜上的小Tim蛋白。我们发现,与其他小Tim蛋白相比,Tim12对线粒体内膜脂质具有内在亲和力。我们发现在体内Tim12的C末端至关重要。其缺失关键地消除了Tim12与其他Tim蛋白形成复合物的组装。N末端包含靶向信息,并且还介导Tim12与载体底物的跨膜片段的直接结合。这些结果为Tim12的基本作用依赖于其独特的组装特性这一概念提供了分子基础,这种特性使该亚基能够在载体导入途径中连接可溶性和膜嵌入的转运酶。

相似文献

1
The essential function of Tim12 in vivo is ensured by the assembly interactions of its C-terminal domain.
J Biol Chem. 2008 Jun 6;283(23):15747-53. doi: 10.1074/jbc.M800350200. Epub 2008 Apr 3.
2
Assembly of the three small Tim proteins precedes docking to the mitochondrial carrier translocase.
EMBO Rep. 2008 Jun;9(6):548-54. doi: 10.1038/embor.2008.49. Epub 2008 Apr 18.
3
Molecular interactions of the mitochondrial Tim12 translocase subunit.
Protein Pept Lett. 2007;14(6):597-600. doi: 10.2174/092986607780990019.
4
Tim9, a new component of the TIM22.54 translocase in mitochondria.
EMBO J. 1999 Jan 15;18(2):313-9. doi: 10.1093/emboj/18.2.313.
5
Distinct domains of small Tims involved in subunit interaction and substrate recognition.
J Mol Biol. 2005 Aug 26;351(4):839-49. doi: 10.1016/j.jmb.2005.06.010.
7
Assembly of the mitochondrial Tim9-Tim10 complex: a multi-step reaction with novel intermediates.
J Mol Biol. 2008 Jan 4;375(1):229-39. doi: 10.1016/j.jmb.2007.10.037. Epub 2007 Oct 22.
8
9
Mitochondrial Tim9 protects Tim10 from degradation by the protease Yme1.
Biosci Rep. 2015 Mar 17;35(3):e00193. doi: 10.1042/BSR20150038.
10
Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins.
EMBO J. 2004 Oct 1;23(19):3735-46. doi: 10.1038/sj.emboj.7600389. Epub 2004 Sep 9.

引用本文的文献

2
Targeting and Insertion of Membrane Proteins in Mitochondria.
Front Cell Dev Biol. 2021 Dec 24;9:803205. doi: 10.3389/fcell.2021.803205. eCollection 2021.
3
Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease.
Front Cardiovasc Med. 2021 Sep 28;8:749756. doi: 10.3389/fcvm.2021.749756. eCollection 2021.
4
Structural basis of client specificity in mitochondrial membrane-protein chaperones.
Sci Adv. 2020 Dec 18;6(51). doi: 10.1126/sciadv.abd0263. Print 2020 Dec.
5
Biogenesis of Mitochondrial Metabolite Carriers.
Biomolecules. 2020 Jul 7;10(7):1008. doi: 10.3390/biom10071008.
6
Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space.
Cell. 2018 Nov 15;175(5):1365-1379.e25. doi: 10.1016/j.cell.2018.10.039.
8
How lipids modulate mitochondrial protein import.
J Bioenerg Biomembr. 2016 Apr;48(2):125-35. doi: 10.1007/s10863-015-9599-7.
9
The power of yeast to model diseases of the powerhouse of the cell.
Front Biosci (Landmark Ed). 2013 Jan 1;18(1):241-78. doi: 10.2741/4098.

本文引用的文献

1
Precursor oxidation by Mia40 and Erv1 promotes vectorial transport of proteins into the mitochondrial intermembrane space.
Mol Biol Cell. 2008 Jan;19(1):226-36. doi: 10.1091/mbc.e07-08-0814. Epub 2007 Oct 31.
2
Oxidative folding of small Tims is mediated by site-specific docking onto Mia40 in the mitochondrial intermembrane space.
Mol Microbiol. 2007 Sep;65(5):1360-73. doi: 10.1111/j.1365-2958.2007.05880.x. Epub 2007 Aug 6.
3
Molecular interactions of the mitochondrial Tim12 translocase subunit.
Protein Pept Lett. 2007;14(6):597-600. doi: 10.2174/092986607780990019.
6
7
Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller.
Mol Cell. 2006 Jan 6;21(1):123-33. doi: 10.1016/j.molcel.2005.11.010.
8
Distinct domains of small Tims involved in subunit interaction and substrate recognition.
J Mol Biol. 2005 Aug 26;351(4):839-49. doi: 10.1016/j.jmb.2005.06.010.
9
A disulfide relay system in the intermembrane space of mitochondria that mediates protein import.
Cell. 2005 Jul 1;121(7):1059-69. doi: 10.1016/j.cell.2005.04.011.
10
Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins.
EMBO J. 2004 Oct 1;23(19):3735-46. doi: 10.1038/sj.emboj.7600389. Epub 2004 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验