Kodama Naomi, Barnard Romain L, Salmon Yann, Weston Christopher, Ferrio Juan Pedro, Holst Jutta, Werner Roland A, Saurer Matthias, Rennenberg Heinz, Buchmann Nina, Gessler Arthur
Institute of Forest Botany and Tree Physiology, University of Freiburg, Georges-Koehler Allee 53/54, 79085, Freiburg, Germany.
Oecologia. 2008 Jul;156(4):737-50. doi: 10.1007/s00442-008-1030-1. Epub 2008 Apr 5.
The (13)C isotopic signature (C stable isotope ratio; delta(13)C) of CO(2) respired from forest ecosystems and their particular compartments are known to be influenced by temporal changes in environmental conditions affecting C isotope fractionation during photosynthesis. Whereas most studies have assessed temporal variation in delta(13)C of ecosystem-respired CO(2) on a day-to-day scale, not much information is available on its diel dynamics. We investigated environmental and physiological controls over potential temporal changes in delta(13)C of respired CO(2) by following the short-term dynamics of the (13)C signature from newly assimilated organic matter pools in the needles, via phloem-transported organic matter in twigs and trunks, to trunk-, soil- and ecosystem-respired CO(2). We found a strong 24-h periodicity in delta(13)C of organic matter in leaf and twig phloem sap, which was strongly dampened as carbohydrates were transported down the trunk. Periodicity reappeared in the delta(13)C of trunk-respired CO(2), which seemed to originate from apparent respiratory fractionation rather than from changes in delta(13)C of the organic substrate. The diel patterns of delta(13)C in soil-respired CO(2) are partly explained by soil temperature and moisture and are probably due to changes in the relative contribution of heterotrophic and autotrophic CO(2) fluxes to total soil efflux in response to environmental conditions. Our study shows that direct relations between delta(13)C of recent assimilates and respired CO(2) may not be present on a diel time scale, and other factors lead to short-term variations in delta(13)C of ecosystem-emitted CO(2). On the one hand, these variations complicate ecosystem CO(2) flux partitioning, but on the other hand they provide new insights into metabolic processes underlying respiratory CO(2) emission.
森林生态系统及其特定组成部分呼出的二氧化碳的(13)C同位素特征(C稳定同位素比率;δ(13)C)已知会受到影响光合作用期间C同位素分馏的环境条件的时间变化的影响。尽管大多数研究在日常尺度上评估了生态系统呼出的二氧化碳的δ(13)C的时间变化,但关于其昼夜动态的信息却不多。我们通过追踪从针叶中新同化的有机物质库、通过小枝和树干中韧皮部运输有机物质,到树干、土壤和生态系统呼出的二氧化碳的(13)C特征的短期动态,研究了对呼出二氧化碳的δ(13)C潜在时间变化的环境和生理控制。我们发现叶片和小枝韧皮部汁液中有机物质的δ(13)C有很强的24小时周期性,随着碳水化合物向下运输到树干,这种周期性被大大减弱。周期性在树干呼出的二氧化碳的δ(13)C中再次出现,这似乎源于明显的呼吸分馏,而不是有机底物的δ(13)C的变化。土壤呼出的二氧化碳的δ(13)C的昼夜模式部分由土壤温度和湿度解释,可能是由于异养和自养二氧化碳通量对总土壤排放的相对贡献随环境条件而变化所致。我们的研究表明,在昼夜时间尺度上,近期同化产物的δ(13)C与呼出二氧化碳之间可能不存在直接关系,其他因素导致生态系统排放的二氧化碳的δ(13)C出现短期变化。一方面,这些变化使生态系统二氧化碳通量分配变得复杂,但另一方面,它们为呼吸二氧化碳排放背后的代谢过程提供了新的见解。