Ambrosi D, Duperray A, Peschetola V, Verdier C
Dipartimento di Matematica, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129, Turin, Italy.
J Math Biol. 2009 Jan;58(1-2):163-81. doi: 10.1007/s00285-008-0167-1. Epub 2008 Apr 8.
The traction exerted by a cell on a planar deformable substrate can be indirectly obtained on the basis of the displacement field of the underlying layer. The usual methodology used to address this inverse problem is based on the exploitation of the Green tensor of the linear elasticity problem in a half space (Boussinesq problem), coupled with a minimization algorithm under force penalization. A possible alternative strategy is to exploit an adjoint equation, obtained on the basis of a suitable minimization requirement. The resulting system of coupled elliptic partial differential equations is applied here to determine the force field per unit surface generated by T24 tumor cells on a polyacrylamide substrate. The shear stress obtained by numerical integration provides quantitative insight of the traction field and is a promising tool to investigate the spatial pattern of force per unit surface generated in cell motion, particularly in the case of such cancer cells.
细胞在平面可变形基质上施加的牵引力可基于下层的位移场间接获得。解决这个反问题的常用方法是利用半空间线性弹性问题的格林张量(布辛涅斯克问题),并结合力惩罚下的最小化算法。一种可能的替代策略是利用基于适当最小化要求得到的伴随方程。由此产生的耦合椭圆型偏微分方程组在此处用于确定T24肿瘤细胞在聚丙烯酰胺基质上产生的单位表面力场。通过数值积分得到的剪应力提供了牵引力场的定量见解,并且是研究细胞运动中单位表面力的空间模式的一种有前途的工具,特别是在这种癌细胞的情况下。