Suppr超能文献

[A-4]釉原蛋白基因剪接产物在新生小鼠成釉细胞中的功能活性鉴定。

Identification of the functional activity of the [A-4] amelogenin gene splice product in newborn mouse ameloblasts.

作者信息

Iacob Stanca, Veis Arthur

机构信息

Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.

出版信息

Bone. 2008 Jun;42(6):1072-9. doi: 10.1016/j.bone.2008.01.023. Epub 2008 Feb 15.

Abstract

In the mouse tooth organ, shortly after birth, ameloblasts acquire their secretory phenotype, which is characterized by the prominent expression and subsequent secretion of two isoforms of amelogenin, M180 and M59 (LRAP, [A-4]). Amelogenin deposition into the ameloblast extracellular matrix promotes enamel biomineralization. A complex set of intercellular signaling events, reciprocal communications between the developing oral epithelium and its underlying dental mesenchyme, guide the expression of amelogenin mRNA, and limit it to a defined period of tooth development. In tooth germ organ culture, addition of the [A-4] isoform, lacking amelogenin exon 4 and exon 6 segments a, b, c, was shown to affect ameloblast development. To understand the basis for this regulatory activity, we have studied the effects of r[A-4] on ameloblast-like LS8 cells, and the role of the putative [A-4] cell surface receptor, LAMP1, as well as the related receptor LAMP3. In the LS8 cells, the expression of the spliced isoforms of amelogenin, LAMP1, and LAMP3 were identified by RT-PCR, and real-time PCR semi-quantitative analysis assessed the modulation of M180 message. M180 mRNA was up-regulated by exogenous [A-4], and this was further increased by blockade of LAMP1, suggesting additive effects between the intracellular signaling pathways activated by the discrete agonists. Immunofluorescence staining identified the patterns of [A-4] and LAMP1 localization in LS8 cells. Internalized r[A-4] was co-localized with LAMP1 in late endosomal/lysosomal compartments. Thus, the LAMP1 and [A-4] intracellular sorting pathways are interrelated. The nitric oxide (NO) signaling pathway was activated by exogenous [A-4]. [A-4] modulated inducible nitric oxide synthase (iNOS, NOS2) and endothelial nitric oxide synthase (eNOS, NOS3) expression, albeit, to different extents. NOS2 was significantly up-regulated after 4 h, while NOS3 increased slightly after 24 h. Co-treatment of LS8 cells with r[A-4] and anti-LAMP1 antibodies further enhanced NOS2 expression. Anti-LAMP1 antibodies did not abrogate NO production in LS8 cells treated for 4 h with r[A-4], but the iNOS inhibitor, l-Nil, down-regulated both NO production and the expression of M180 mRNA. These data suggest that [A-4] modulates M180 mRNA expression, partly, via the NO signaling pathway.

摘要

在小鼠牙器官中,出生后不久,成釉细胞获得其分泌表型,其特征是牙釉蛋白的两种异构体M180和M59(LRAP,[A - 4])显著表达并随后分泌。牙釉蛋白沉积到成釉细胞外基质中可促进牙釉质生物矿化。一系列复杂的细胞间信号事件,即发育中的口腔上皮与其下方的牙间充质之间的相互通讯,引导牙釉蛋白mRNA的表达,并将其限制在牙齿发育的特定时期。在牙胚器官培养中,添加缺乏牙釉蛋白外显子4和外显子6片段a、b、c的[A - 4]异构体已显示会影响成釉细胞发育。为了解这种调节活性的基础,我们研究了重组[A - 4]对成釉细胞样LS8细胞的影响,以及假定的[A - 4]细胞表面受体LAMP1以及相关受体LAMP3的作用。在LS8细胞中,通过逆转录聚合酶链反应(RT-PCR)鉴定牙釉蛋白、LAMP1和LAMP3的剪接异构体的表达,实时PCR半定量分析评估M180信息的调节。外源性[A - 4]上调M180 mRNA,而LAMP1阻断进一步增加其表达,表明由离散激动剂激活的细胞内信号通路之间存在累加效应。免疫荧光染色确定了[A - 4]和LAMP1在LS8细胞中的定位模式。内化的重组[A - 4]与LAMP1在晚期内体/溶酶体区室中共定位。因此,LAMP1和[A - 4]细胞内分选途径相互关联。外源性[A - 4]激活一氧化氮(NO)信号通路。[A - 4]调节诱导型一氧化氮合酶(iNOS,NOS2)和内皮型一氧化氮合酶(eNOS,NOS3)的表达,尽管程度不同。4小时后NOS2显著上调,而24小时后NOS3略有增加。用重组[A - 4]和抗LAMP1抗体共同处理LS8细胞进一步增强了NOS2表达。抗LAMP1抗体并未消除用重组[A - 4]处理4小时的LS8细胞中的NO产生,但iNOS抑制剂L - 硝基精氨酸甲酯(l - Nil)下调了NO产生和M180 mRNA的表达。这些数据表明,[A - 4]部分通过NO信号通路调节M180 mRNA表达。

相似文献

1
Identification of the functional activity of the [A-4] amelogenin gene splice product in newborn mouse ameloblasts.
Bone. 2008 Jun;42(6):1072-9. doi: 10.1016/j.bone.2008.01.023. Epub 2008 Feb 15.
3
Identification of temporal and spatial expression patterns of amelogenin isoforms during mouse molar development.
Eur J Oral Sci. 2006 May;114 Suppl 1:194-200; discussion 201-2, 381. doi: 10.1111/j.1600-0722.2006.00287.x.
4
Ameloblast differentiation in the human developing tooth: effects of extracellular matrices.
Matrix Biol. 2010 Jun;29(5):411-9. doi: 10.1016/j.matbio.2010.03.001. Epub 2010 Mar 6.
5
Leucine rich amelogenin peptide alters ameloblast differentiation in vivo.
Matrix Biol. 2013 Oct-Nov;32(7-8):432-42. doi: 10.1016/j.matbio.2013.05.004. Epub 2013 Jun 4.
7
Amelogenin Exon4 Forms a Novel miRNA That Directs Ameloblast and Osteoblast Differentiation.
J Dent Res. 2016 Apr;95(4):423-9. doi: 10.1177/0022034515622443. Epub 2015 Dec 29.
8
M180 amelogenin processed by MMP20 is sufficient for decussating murine enamel.
J Dent Res. 2013 Dec;92(12):1118-22. doi: 10.1177/0022034513506444. Epub 2013 Sep 26.
9
GTPases RhoA and Rac1 are important for amelogenin and DSPP expression during differentiation of ameloblasts and odontoblasts.
Cell Tissue Res. 2010 Jun;340(3):459-70. doi: 10.1007/s00441-010-0961-0. Epub 2010 Apr 13.
10
A solution NMR investigation into the murine amelogenin splice-variant LRAP (Leucine-Rich Amelogenin Protein).
Biochim Biophys Acta. 2010 Sep;1804(9):1768-74. doi: 10.1016/j.bbapap.2010.03.006. Epub 2010 Mar 19.

引用本文的文献

1
Leucine rich amelogenin peptide prevents ovariectomy-induced bone loss in mice.
PLoS One. 2021 Nov 15;16(11):e0259966. doi: 10.1371/journal.pone.0259966. eCollection 2021.
2
Amelogenin-Derived Peptides in Bone Regeneration: A Systematic Review.
Int J Mol Sci. 2021 Aug 26;22(17):9224. doi: 10.3390/ijms22179224.
4
Phosphorylated and Non-phosphorylated Leucine Rich Amelogenin Peptide Differentially Affect Ameloblast Mineralization.
Front Physiol. 2018 Feb 8;9:55. doi: 10.3389/fphys.2018.00055. eCollection 2018.
5
Production and physiological role of NO in the oral cavity.
Jpn Dent Sci Rev. 2016 Feb;52(1):14-21. doi: 10.1016/j.jdsr.2015.08.001. Epub 2015 Sep 11.
6
Interaction of enamel matrix proteins with human periodontal ligament cells.
Clin Oral Investig. 2016 Mar;20(2):339-47. doi: 10.1007/s00784-015-1510-8. Epub 2015 Jul 1.
7
Leucine rich amelogenin peptide alters ameloblast differentiation in vivo.
Matrix Biol. 2013 Oct-Nov;32(7-8):432-42. doi: 10.1016/j.matbio.2013.05.004. Epub 2013 Jun 4.
8
A simplified genetic design for mammalian enamel.
Biomaterials. 2011 Apr;32(12):3151-7. doi: 10.1016/j.biomaterials.2011.01.024. Epub 2011 Feb 5.
9
Full length amelogenin binds to cell surface LAMP-1 on tooth root/periodontium associated cells.
Arch Oral Biol. 2010 Jun;55(6):417-25. doi: 10.1016/j.archoralbio.2010.03.009. Epub 2010 Apr 10.
10
Enamel matrix proteins; old molecules for new applications.
Orthod Craniofac Res. 2009 Aug;12(3):243-53. doi: 10.1111/j.1601-6343.2009.01459.x.

本文引用的文献

1
Cellular uptake of amelogenin, and its localization to CD63, and Lamp1-positive vesicles.
Cell Mol Life Sci. 2007 Jan;64(2):244-56. doi: 10.1007/s00018-006-6429-4.
2
Nitric oxide and cell proliferation.
FEBS J. 2006 Jun;273(11):2329-44. doi: 10.1111/j.1742-4658.2006.05250.x.
3
Identification of temporal and spatial expression patterns of amelogenin isoforms during mouse molar development.
Eur J Oral Sci. 2006 May;114 Suppl 1:194-200; discussion 201-2, 381. doi: 10.1111/j.1600-0722.2006.00287.x.
4
Characterization of a mouse amelogenin [A-4]/M59 cell surface receptor.
Bone. 2006 Feb;38(2):172-80. doi: 10.1016/j.bone.2005.08.013. Epub 2005 Oct 6.
5
Mouse amelogenin exons 8 and 9: sequence analysis and protein distribution.
J Dent Res. 2005 Jul;84(7):613-7. doi: 10.1177/154405910508400706.
6
Enamel matrix protein interactions.
J Bone Miner Res. 2005 Jun;20(6):1032-40. doi: 10.1359/JBMR.050111. Epub 2005 Jan 24.
8
Supramolecular assembly of amelogenin nanospheres into birefringent microribbons.
Science. 2005 Mar 4;307(5714):1450-4. doi: 10.1126/science.1105675.
9
Materials science. A window on biomineralization.
Science. 2005 Mar 4;307(5714):1419-20. doi: 10.1126/science.1109440.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验