Suppr超能文献

时间序列中的非线性密度依赖性并非非逻辑斯蒂增长的证据。

Non-linear density dependence in time series is not evidence of non-logistic growth.

作者信息

Doncaster C Patrick

机构信息

School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.

出版信息

Theor Popul Biol. 2008 Jun;73(4):483-9. doi: 10.1016/j.tpb.2008.02.003. Epub 2008 Mar 4.

Abstract

Time series of population density are often used to seek deviations from logistic regulation by testing for a non-linear decline in per capita growth rate with density. Here I show that this method fails when the interval between observations is not matched by the timing of density impacts on growth. Time series overestimate instantaneous density impacts at low density and underestimate them at high density. More generally, logistic growth produces a deterministically decelerating decline in per capita growth with density if the interval between measures of population size exceeds any lag in density response. Deceleration arises independently out of stochastic density fluctuations, and under-compensating regulation. These multiple influences lead to the conclusion that sequential density estimates provide insufficient information on their own to reveal the identity of non-logistic growth processes. They can yield estimates of density compensation, however, which may suggest time lags in density dependence. Analysis of an empirical time series illustrates the issues.

摘要

人口密度的时间序列常被用于通过检验人均增长率随密度的非线性下降来寻找与逻辑斯谛调节的偏差。在此我表明,当观测间隔与密度对增长的影响时间不匹配时,这种方法就会失效。时间序列在低密度时高估了瞬时密度影响,而在高密度时低估了它们。更一般地说,如果种群数量测量之间的间隔超过了密度响应中的任何滞后,逻辑斯谛增长会导致人均增长随密度确定性地减速下降。减速独立于随机密度波动和补偿不足的调节而产生。这些多种影响导致这样的结论:连续的密度估计本身提供的信息不足以揭示非逻辑斯谛增长过程的特征。然而,它们可以得出密度补偿的估计值,这可能暗示了密度依赖性中的时间滞后。对一个实证时间序列的分析说明了这些问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验