Suppr超能文献

HIV蛋白酶敏感性的蛋白质化学计量学建模

Proteochemometric modeling of HIV protease susceptibility.

作者信息

Lapins Maris, Eklund Martin, Spjuth Ola, Prusis Peteris, Wikberg Jarl E S

机构信息

Department of Pharmaceutical Pharmacology, Uppsala University, SE-751 24, Sweden.

出版信息

BMC Bioinformatics. 2008 Apr 10;9:181. doi: 10.1186/1471-2105-9-181.

Abstract

BACKGROUND

A major obstacle in treatment of HIV is the ability of the virus to mutate rapidly into drug-resistant variants. A method for predicting the susceptibility of mutated HIV strains to antiviral agents would provide substantial clinical benefit as well as facilitate the development of new candidate drugs. Therefore, we used proteochemometrics to model the susceptibility of HIV to protease inhibitors in current use, utilizing descriptions of the physico-chemical properties of mutated HIV proteases and 3D structural property descriptions for the protease inhibitors. The descriptions were correlated to the susceptibility data of 828 unique HIV protease variants for seven protease inhibitors in current use; the data set comprised 4792 protease-inhibitor combinations.

RESULTS

The model provided excellent predictability (R2 = 0.92, Q2 = 0.87) and identified general and specific features of drug resistance. The model's predictive ability was verified by external prediction in which the susceptibilities to each one of the seven inhibitors were omitted from the data set, one inhibitor at a time, and the data for the six remaining compounds were used to create new models. This analysis showed that the over all predictive ability for the omitted inhibitors was Q2 inhibitors = 0.72.

CONCLUSION

Our results show that a proteochemometric approach can provide generalized susceptibility predictions for new inhibitors. Our proteochemometric model can directly analyze inhibitor-protease interactions and facilitate treatment selection based on viral genotype. The model is available for public use, and is located at HIV Drug Research Centre.

摘要

背景

治疗HIV的一个主要障碍是该病毒能够迅速突变为耐药变体。一种预测突变HIV毒株对抗病毒药物敏感性的方法将带来巨大的临床益处,并有助于开发新的候选药物。因此,我们使用蛋白质化学计量学对目前使用的HIV对蛋白酶抑制剂的敏感性进行建模,利用突变HIV蛋白酶的物理化学性质描述以及蛋白酶抑制剂的三维结构性质描述。这些描述与828种独特HIV蛋白酶变体对七种目前使用的蛋白酶抑制剂的敏感性数据相关;该数据集包含4792种蛋白酶-抑制剂组合。

结果

该模型具有出色的预测能力(R2 = 0.92,Q2 = 0.87),并确定了耐药性的一般和特定特征。通过外部预测验证了该模型的预测能力,在外部预测中,每次从数据集中省略七种抑制剂中一种抑制剂的敏感性数据,并使用其余六种化合物的数据创建新模型。该分析表明,对省略抑制剂的总体预测能力为Q2抑制剂 = 0.72。

结论

我们的结果表明,蛋白质化学计量学方法可以为新抑制剂提供广义的敏感性预测。我们的蛋白质化学计量学模型可以直接分析抑制剂-蛋白酶相互作用,并有助于基于病毒基因型进行治疗选择。该模型可供公众使用,位于HIV药物研究中心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/2375133/2e481755575a/1471-2105-9-181-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验