Gieni Randall S, Chan Gordon K T, Hendzel Michael J
Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada.
J Cell Biochem. 2008 Aug 15;104(6):2027-39. doi: 10.1002/jcb.21767.
The eukaryote centromere was initially defined cytologically as the primary constriction on vertebrate chromosomes and functionally as a chromosomal feature with a relatively low recombination frequency. Structurally, the centromere is the foundation for sister chromatid cohesion and kinetochore formation. Together these provide the basis for interaction between chromosomes and the mitotic spindle, allowing the efficient segregation of sister chromatids during cell division. Although centromeric (CEN) DNA is highly variable between species, in all cases the functional centromere forms in a chromatin domain defined by the substitution of histone H3 with the centromere specific H3 variant centromere protein A (CENP-A), also known as CENH3. Kinetochore formation and function are dependent on a variety of regional epigenetic modifications that appear to result in a loop chromatin conformation providing exterior CENH3 domains for kinetochore construction, and interior heterochromatin domains essential for sister chromatid cohesion. In addition pericentric heterochromatin provides a structural element required for spindle assembly checkpoint function. Advances in our understanding of CENH3 biology have resulted in a model where kinetochore location is specified by the epigenetic mark left after dilution of CENH3 to daughter DNA strands during S phase. This results in a self-renewing and self-reinforcing epigenetic state favorable to reliably mark centromere location, as well as to provide the optimal chromatin configuration for kinetochore formation and function.
真核生物的着丝粒最初在细胞学上被定义为脊椎动物染色体上的主要缢痕,在功能上被定义为重组频率相对较低的染色体特征。在结构上,着丝粒是姐妹染色单体黏连和动粒形成的基础。这些共同为染色体与有丝分裂纺锤体之间的相互作用提供了基础,使姐妹染色单体在细胞分裂期间能够有效分离。尽管着丝粒(CEN)DNA在物种间高度可变,但在所有情况下,功能性着丝粒都在一个染色质结构域中形成,该结构域由着丝粒特异性H3变体着丝粒蛋白A(CENP - A,也称为CENH3)取代组蛋白H3来界定。动粒的形成和功能依赖于多种区域表观遗传修饰,这些修饰似乎导致环状染色质构象,为动粒构建提供外部CENH3结构域,为姐妹染色单体黏连提供内部异染色质结构域。此外,着丝粒周围的异染色质为纺锤体组装检查点功能提供了所需的结构元件。我们对着丝粒蛋白A生物学理解的进展产生了一个模型,其中动粒位置由S期CENH3稀释到子代DNA链后留下的表观遗传标记指定。这导致一种自我更新和自我强化的表观遗传状态有利于可靠地标记载丝粒位置,并为动粒的形成和功能提供最佳染色质构型。