Suppr超能文献

评估一种用于小鼠睡眠和觉醒相关行为的非侵入性高通量分类器。

Assessment of a non-invasive high-throughput classifier for behaviours associated with sleep and wake in mice.

作者信息

Donohue Kevin D, Medonza Dharshan C, Crane Eli R, O'Hara Bruce F

机构信息

Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA.

出版信息

Biomed Eng Online. 2008 Apr 11;7:14. doi: 10.1186/1475-925X-7-14.

Abstract

This work presents a non-invasive high-throughput system for automatically detecting characteristic behaviours in mice over extended periods of time, useful for phenotyping experiments. The system classifies time intervals on the order of 2 to 4 seconds as corresponding to motions consistent with either active wake or inactivity associated with sleep. A single Polyvinylidine Difluoride (PVDF) sensor on the cage floor generates signals from motion resulting in pressure. This paper develops a linear classifier based on robust features extracted from normalized power spectra and autocorrelation functions, as well as novel features from the collapsed average (autocorrelation of complex spectrum), which characterize transient and periodic properties of the signal envelope. Performance is analyzed through an experiment comparing results from direct human observation and classification of the different behaviours with an automatic classifier used in conjunction with this system. Experimental results from over 28.5 hours of data from 4 mice indicate a 94% classification rate relative to the human observations. Examples of sequential classifications (2 second increments) over transition regions between sleep and wake behaviour are also presented to demonstrate robust performance to signal variation and explain performance limitations.

摘要

这项工作展示了一种非侵入性的高通量系统,用于长时间自动检测小鼠的特征行为,对表型实验很有用。该系统将2到4秒左右的时间间隔分类为与活跃清醒或与睡眠相关的不活动相一致的运动。笼子底部的单个聚偏二氟乙烯(PVDF)传感器会根据运动产生压力信号。本文基于从归一化功率谱和自相关函数中提取的稳健特征,以及来自折叠平均值(复谱自相关)的新特征,开发了一种线性分类器,这些特征表征了信号包络的瞬态和周期性特性。通过一项实验来分析性能,该实验将直接人工观察和对不同行为的分类结果与结合该系统使用的自动分类器进行比较。来自4只小鼠的超过28.5小时数据的实验结果表明,相对于人工观察,分类率为94%。还给出了睡眠和清醒行为过渡区域的连续分类(2秒增量)示例,以展示对信号变化的稳健性能并解释性能限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5392/2365952/a23066c3a747/1475-925X-7-14-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验