Suppr超能文献

利用床下称重传感器对睡眠和清醒状态进行非侵入式分类。

Unobtrusive classification of sleep and wakefulness using load cells under the bed.

作者信息

Austin Daniel, Beattie Zachary T, Riley Thomas, Adami Adriana M, Hagen Chad C, Hayes Tamara L

机构信息

Biomedical Engineering Department, Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR 973239, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5254-7. doi: 10.1109/EMBC.2012.6347179.

Abstract

Poor quality of sleep increases the risk of many adverse health outcomes. Some measures of sleep, such as sleep efficiency or sleep duration, are calculated from periods of time when a patient is asleep and awake. The current method for assessing sleep and wakefulness is based on polysomnography, an expensive and inconvenient method of measuring sleep in a clinical setting. In this paper, we suggest an alternative method of detecting periods of sleep and wake that can be obtained unobtrusively in a patient's own home by placing load cells under the supports of their bed. Specifically, we use a support vector machine to classify periods of sleep and wake in a cohort of patients admitted to a sleep lab. The inputs to the classifier are subject demographic information, a statistical characterization of the load cell derived signals, and several sleep parameters estimated from the load cell data that are related to movement and respiration. Our proposed classifier achieves an average sensitivity of 0.808 and specificity of 0.812 with 90% confidence intervals of (0.790, 0.821) and (0.798, 0.826), respectively, when compared to the "gold-standard" sleep/wake annotations during polysomnography. As this performance is over 27 sleep patients with a wide variety of diagnosis levels of sleep disordered breathing, age, body mass index, and other demographics, our method is robust and works well in clinical practice.

摘要

睡眠质量差会增加许多不良健康后果的风险。一些睡眠指标,如睡眠效率或睡眠时间,是根据患者睡眠和清醒的时间段来计算的。目前评估睡眠和清醒状态的方法基于多导睡眠图,这是一种在临床环境中测量睡眠的昂贵且不便的方法。在本文中,我们提出了一种检测睡眠和清醒时间段的替代方法,通过在患者床的支撑物下放置称重传感器,可以在患者家中不显眼地获得相关数据。具体而言,我们使用支持向量机对进入睡眠实验室的一组患者的睡眠和清醒时间段进行分类。分类器的输入包括受试者的人口统计学信息、称重传感器衍生信号的统计特征,以及从与运动和呼吸相关的称重传感器数据估计的几个睡眠参数。与多导睡眠图期间的“金标准”睡眠/清醒注释相比,我们提出的分类器平均灵敏度为0.808,特异性为0.812,90%置信区间分别为(0.790, 0.821)和(0.798, 0.826)。由于该性能是在27名患有各种睡眠呼吸障碍诊断水平、年龄、体重指数和其他人口统计学特征的睡眠患者中获得的,我们的方法具有鲁棒性,在临床实践中效果良好。

相似文献

1
Unobtrusive classification of sleep and wakefulness using load cells under the bed.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5254-7. doi: 10.1109/EMBC.2012.6347179.
2
Classification of breathing events using load cells under the bed.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3921-4. doi: 10.1109/IEMBS.2009.5333548.
3
Automatic sleep staging based on ballistocardiographic signals recorded through bed sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3273-6. doi: 10.1109/IEMBS.2010.5627217.
4
Assessment of sleep/wake patterns using a non-contact biomotion sensor.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:514-7. doi: 10.1109/IEMBS.2008.4649203.
6
A continuous evaluation of the awake sleep state using fuzzy reasoning.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5539-42. doi: 10.1109/IEMBS.2009.5333728.
7
Sleep stage recognition using respiration signal.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2843-2846. doi: 10.1109/EMBC.2016.7591322.
8
Noncontact Pressure-Based Sleep/Wake Discrimination.
IEEE Trans Biomed Eng. 2017 Aug;64(8):1750-1760. doi: 10.1109/TBME.2016.2621066. Epub 2016 Oct 25.
9
Improving actigraph sleep/wake classification with cardio-respiratory signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5262-5. doi: 10.1109/IEMBS.2008.4650401.
10
Classification of sleep stages in infants: a neuro fuzzy approach.
IEEE Eng Med Biol Mag. 2002 Sep-Oct;21(5):147-51. doi: 10.1109/memb.2002.1044185.

引用本文的文献

1
Contactless Camera-Based Sleep Staging: The HealthBed Study.
Bioengineering (Basel). 2023 Jan 12;10(1):109. doi: 10.3390/bioengineering10010109.
2
Pervasive Lying Posture Tracking.
Sensors (Basel). 2020 Oct 21;20(20):5953. doi: 10.3390/s20205953.
4
In-Home Sleep Apnea Severity Classification using Contact-free Load Cells and an AdaBoosted Decision Tree Algorithm.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:6044-6047. doi: 10.1109/EMBC.2018.8513602.
5
A time-frequency respiration tracking system using non-contact bed sensors with harmonic artifact rejection.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:8111-4. doi: 10.1109/EMBC.2015.7320276.

本文引用的文献

2
A method for classification of movements in bed.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7881-4. doi: 10.1109/IEMBS.2011.6091943.
3
A sensor for monitoring pulse rate, respiration rhythm, and body movement in bed.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5323-6. doi: 10.1109/IEMBS.2011.6091317.
4
Classification of lying position using load cells under the bed.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:474-7. doi: 10.1109/IEMBS.2011.6090068.
5
Wakefulness estimation only using ballistocardiogram: nonintrusive method for sleep monitoring.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2459-62. doi: 10.1109/IEMBS.2010.5626544.
6
Aging and sleep: physiology and pathophysiology.
Semin Respir Crit Care Med. 2010 Oct;31(5):618-33. doi: 10.1055/s-0030-1265902. Epub 2010 Oct 12.
7
Classification of breathing events using load cells under the bed.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3921-4. doi: 10.1109/IEMBS.2009.5333548.
8
Comparison of load cells and wrist-actigraphy for unobtrusive monitoring of sleep movements.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1314-7. doi: 10.1109/IEMBS.2009.5332577.
9
Slow-wave sleep estimation on a load-cell-installed bed: a non-constrained method.
Physiol Meas. 2009 Nov;30(11):1163-70. doi: 10.1088/0967-3334/30/11/002. Epub 2009 Oct 1.
10
Sleep structure in patients with periodic limb movements and obstructive sleep apnea syndrome.
J Clin Neurophysiol. 2009 Aug;26(4):267-71. doi: 10.1097/WNP.0b013e3181aed01e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验