Suppr超能文献

利用心肺信号改善活动记录仪的睡眠/清醒分类

Improving actigraph sleep/wake classification with cardio-respiratory signals.

作者信息

Karlen Walter, Mattiussi Claudio, Floreano Dario

机构信息

Laboratory of Intelligent Systems, Institute of Micro-engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Switzerland.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5262-5. doi: 10.1109/IEMBS.2008.4650401.

Abstract

Actigraphy for long-term sleep/wake monitoring fails to correctly classify situations where the subject displays low activity, but is awake. In this paper we propose a new algorithm which uses both accelerometer and cardio-respiratory signals to overcome this restriction. Acceleration, electrocardiogram and respiratory effort were measured with an integrated wearable recording system worn on the chest by three healthy male subjects during normal daily activities. For signal processing a Fast Fourier Transformation and as classifier a feed-forward Artificial Neural Network was used. The best classifier achieved an accuracy of 96.14%, a sensitivity of 94.65% and a specificity of 98.19%. The algorithm is suitable for integration into a wearable device for long-term home monitoring.

摘要

用于长期睡眠/清醒监测的活动记录仪无法正确分类受试者活动量低但清醒的情况。在本文中,我们提出了一种新算法,该算法使用加速度计和心肺信号来克服这一限制。三名健康男性受试者在正常日常活动期间,通过佩戴在胸部的集成可穿戴记录系统测量加速度、心电图和呼吸努力。信号处理使用快速傅里叶变换,分类器使用前馈人工神经网络。最佳分类器的准确率为96.14%,灵敏度为94.65%,特异性为98.19%。该算法适用于集成到可穿戴设备中进行长期家庭监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验