Kamgang Jean Claude, Sallet Gauthier
University of Ngaoundéré, ENSAI, Department of Mathematics and Computer Sciences, P.O. Box 455, Ngaoundéré, Cameroon.
Math Biosci. 2008 May;213(1):1-12. doi: 10.1016/j.mbs.2008.02.005. Epub 2008 Feb 23.
One goal of this paper is to give an algorithm for computing a threshold condition for epidemiological systems arising from compartmental deterministic modeling. We calculate a threshold condition T(0) of the parameters of the system such that if T(0)<1 the disease-free equilibrium (DFE) is locally asymptotically stable (LAS), and if T(0)>1, the DFE is unstable. The second objective, by adding some reasonable assumptions, is to give, depending on the model, necessary and sufficient conditions for global asymptotic stability (GAS) of the DFE. In many cases, we can prove that a necessary and sufficient condition for the global asymptotic stability of the DFE is R(0)< or =1, where R(0) is the basic reproduction number [O. Diekmann, J.A. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, New York, 2000]. To illustrate our results, we apply our techniques to examples taken from the literature. In these examples we improve the results already obtained for the GAS of the DFE. We show that our algorithm is relevant for high dimensional epidemiological models.
本文的一个目标是给出一种算法,用于计算由确定性 compartmental 模型产生的流行病学系统的阈值条件。我们计算系统参数的阈值条件 T(0),使得如果 T(0)<1,无病平衡点(DFE)是局部渐近稳定的(LAS),而如果 T(0)>1,DFE 是不稳定的。第二个目标是通过添加一些合理的假设,根据模型给出 DFE 全局渐近稳定(GAS)的必要和充分条件。在许多情况下,我们可以证明 DFE 全局渐近稳定的必要和充分条件是 R(0)≤1,其中 R(0) 是基本再生数[O. Diekmann, J.A. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, New York, 2000]。为了说明我们的结果,我们将我们的技术应用于文献中的例子。在这些例子中,我们改进了已经得到的关于 DFE 的 GAS 的结果。我们表明我们的算法适用于高维流行病学模型。