Suppr超能文献

枯草芽孢杆菌GH43阿拉伯聚糖酶Abn2的编码基因abn2(yxiA)的特性及其在阿拉伯糖多聚糖降解中的作用。

Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation.

作者信息

Inácio José Manuel, de Sá-Nogueira Isabel

机构信息

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida de República-EAN, 2780-157 Oeiras, Portugal.

出版信息

J Bacteriol. 2008 Jun;190(12):4272-80. doi: 10.1128/JB.00162-08. Epub 2008 Apr 11.

Abstract

The extracellular depolymerization of arabinopolysaccharides by microorganisms is accomplished by arabinanases, xylanases, and galactanases. Here, we characterize a novel endo-alpha-1,5-l-arabinanase (EC 3.2.1.99) from Bacillus subtilis, encoded by the yxiA gene (herein renamed abn2) that contributes to arabinan degradation. Functional studies by mutational analysis showed that Abn2, together with previously characterized AbnA, is responsible for the majority of the extracellular arabinan activity in B. subtilis. Abn2 was overproduced in Escherichia coli, purified from the periplasmic fraction, and characterized with respect to substrate specificity and biochemical and physical properties. With linear-alpha-1,5-l-arabinan as the preferred substrate, the enzyme exhibited an apparent K(m) of 2.0 mg ml(-1) and V(max) of 0.25 mmol min(-1) mg(-1) at pH 7.0 and 50 degrees C. RNA studies revealed the monocistronic nature of abn2. Two potential transcriptional start sites were identified by primer extension analysis, and both a sigma(A)-dependent and a sigma(H)-dependent promoter were located. Transcriptional fusion studies revealed that the expression of abn2 is stimulated by arabinan and pectin and repressed by glucose; however, arabinose is not the natural inducer. Additionally, trans-acting factors and cis elements involved in transcription were investigated. Abn2 displayed a control mechanism at a level of gene expression different from that observed with AbnA. These distinct regulatory mechanisms exhibited by two members of extracellular glycoside hydrolase family 43 (GH43) suggest an adaptative strategy of B. subtilis for optimal degradation of arabinopolysaccharides.

摘要

微生物对阿拉伯聚糖的胞外解聚作用是通过阿拉伯聚糖酶、木聚糖酶和半乳聚糖酶来完成的。在此,我们对来自枯草芽孢杆菌的一种新型内切α-1,5-L-阿拉伯聚糖酶(EC 3.2.1.99)进行了表征,该酶由yxiA基因(在此重新命名为abn2)编码,对阿拉伯聚糖降解有贡献。通过突变分析进行的功能研究表明,Abn2与先前表征的AbnA一起,负责枯草芽孢杆菌中大部分的胞外阿拉伯聚糖活性。Abn2在大肠杆菌中过量表达,从周质部分纯化,并对其底物特异性以及生化和物理性质进行了表征。以线性α-1,5-L-阿拉伯聚糖为首选底物时,该酶在pH 7.0和50℃下的表观K(m)为2.0 mg ml(-1),V(max)为0.25 mmol min(-1) mg(-1)。RNA研究揭示了abn2的单顺反子性质。通过引物延伸分析确定了两个潜在的转录起始位点,并定位了一个依赖于sigma(A)的启动子和一个依赖于sigma(H)的启动子。转录融合研究表明,abn2的表达受到阿拉伯聚糖和果胶的刺激,并受到葡萄糖的抑制;然而,阿拉伯糖不是天然诱导物。此外,还研究了参与转录的反式作用因子和顺式元件。Abn2在基因表达水平上表现出一种与AbnA不同的调控机制。胞外糖苷水解酶家族43(GH43)的两个成员所表现出的这些不同调控机制,提示了枯草芽孢杆菌对阿拉伯聚糖进行最佳降解的一种适应性策略。

相似文献

2
Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis.
Microbiology (Reading). 2008 Sep;154(Pt 9):2719-2729. doi: 10.1099/mic.0.2008/018978-0.
3
Overproduction, crystallization and preliminary X-ray characterization of Abn2, an endo-1,5-alpha-arabinanase from Bacillus subtilis.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Jul 1;64(Pt 7):636-8. doi: 10.1107/S1744309108016321. Epub 2008 Jun 11.
4
Transcriptional regulation of genes encoding arabinan-degrading enzymes in Bacillus subtilis.
J Bacteriol. 2004 Mar;186(5):1287-96. doi: 10.1128/JB.186.5.1287-1296.2004.
5
The importance of the Abn2 calcium cluster in the endo-1,5-arabinanase activity from Bacillus subtilis.
J Biol Inorg Chem. 2014 Jun;19(4-5):505-13. doi: 10.1007/s00775-014-1105-x. Epub 2014 Feb 19.
6
Expression and characterization of a GH43 endo-arabinanase from Thermotoga thermarum.
BMC Biotechnol. 2014 Apr 30;14:35. doi: 10.1186/1472-6750-14-35.
7
Characterization of two extracellular arabinanases in Lactobacillus crispatus.
Appl Microbiol Biotechnol. 2020 Dec;104(23):10091-10103. doi: 10.1007/s00253-020-10979-0. Epub 2020 Oct 29.
8
Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis.
FEMS Microbiol Lett. 2004 Dec 1;241(1):41-8. doi: 10.1016/j.femsle.2004.10.003.
9
Detailed Mode of Action of Arabinan-Debranching α--Arabinofuranosidase GH51 from .
J Microbiol Biotechnol. 2019 Jan 28;29(1):37-43. doi: 10.4014/jmb.1807.11035.
10
New evidence for the role of calcium in the glycosidase reaction of GH43 arabinanases.
FEBS J. 2010 Nov;277(21):4562-74. doi: 10.1111/j.1742-4658.2010.07870.x. Epub 2010 Sep 30.

引用本文的文献

1
Exo- and Endo-1,5-α-L-Arabinanases and Prebiotic Arabino-Oligosaccharides Production.
J Microbiol Biotechnol. 2025 Jan 13;35:e2412052. doi: 10.4014/jmb.2412.12052.
3
Arabinan hydrolysis by GH43 enzymes of Hungateiclostridium clariflavum and the potential synergistic mechanisms.
Appl Microbiol Biotechnol. 2022 Dec;106(23):7793-7803. doi: 10.1007/s00253-022-12238-w. Epub 2022 Oct 17.
4
Chemical and nutritional characteristics, and microbial degradation of rapeseed meal recalcitrant carbohydrates: A review.
Front Nutr. 2022 Sep 28;9:948302. doi: 10.3389/fnut.2022.948302. eCollection 2022.
5
Metabolic engineering enables Bacillus licheniformis to grow on the marine polysaccharide ulvan.
Microb Cell Fact. 2022 Oct 10;21(1):207. doi: 10.1186/s12934-022-01931-0.
6
Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization.
Appl Environ Microbiol. 2022 Oct 26;88(20):e0127422. doi: 10.1128/aem.01274-22. Epub 2022 Sep 28.
7
Quantification and biodegradability assessment of meso-2,3-dimercaptosuccinic acid adsorbed on iron oxide nanoparticles.
Nanoscale Adv. 2019 Aug 12;1(9):3670-3679. doi: 10.1039/c9na00236g. eCollection 2019 Sep 11.
8
Characterization of two extracellular arabinanases in Lactobacillus crispatus.
Appl Microbiol Biotechnol. 2020 Dec;104(23):10091-10103. doi: 10.1007/s00253-020-10979-0. Epub 2020 Oct 29.
9
The Operon Encodes a Utilization System for the Raffinose Family of Oligosaccharides in .
J Bacteriol. 2019 Jul 10;201(15). doi: 10.1128/JB.00109-19. Print 2019 Aug 1.
10
The MsmX ATPase plays a crucial role in pectin mobilization by Bacillus subtilis.
PLoS One. 2017 Dec 14;12(12):e0189483. doi: 10.1371/journal.pone.0189483. eCollection 2017.

本文引用的文献

1
trans-Acting factors and cis elements involved in glucose repression of arabinan degradation in Bacillus subtilis.
J Bacteriol. 2007 Nov;189(22):8371-6. doi: 10.1128/JB.01217-07. Epub 2007 Sep 7.
2
Recombinant expression and characterization of XynD from Bacillus subtilis subsp. subtilis ATCC 6051: a GH 43 arabinoxylan arabinofuranohydrolase.
Appl Microbiol Biotechnol. 2007 Jul;75(6):1309-17. doi: 10.1007/s00253-007-0956-2. Epub 2007 Apr 11.
3
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031. doi: 10.1128/MMBR.00024-06.
5
Alpha-L-arabinofuranosidases: the potential applications in biotechnology.
J Ind Microbiol Biotechnol. 2006 Apr;33(4):247-60. doi: 10.1007/s10295-005-0072-1. Epub 2005 Dec 30.
6
Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis.
FEMS Microbiol Lett. 2004 Dec 1;241(1):41-8. doi: 10.1016/j.femsle.2004.10.003.
7
Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome.
Microbiol Mol Biol Rev. 2004 Jun;68(2):207-33. doi: 10.1128/MMBR.68.2.207-233.2004.
8
Transcriptional regulation of genes encoding arabinan-degrading enzymes in Bacillus subtilis.
J Bacteriol. 2004 Mar;186(5):1287-96. doi: 10.1128/JB.186.5.1287-1296.2004.
9
Interactions among CotB, CotG, and CotH during assembly of the Bacillus subtilis spore coat.
J Bacteriol. 2004 Feb;186(4):1110-9. doi: 10.1128/JB.186.4.1110-1119.2004.
10
CcpA-dependent carbon catabolite repression in bacteria.
Microbiol Mol Biol Rev. 2003 Dec;67(4):475-90. doi: 10.1128/MMBR.67.4.475-490.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验