Rimkus Stacey A, Katzenberger Rebeccah J, Trinh Anthony T, Dodson Gerald E, Tibbetts Randal S, Wassarman David A
Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.
Genes Dev. 2008 May 1;22(9):1205-20. doi: 10.1101/gad.1639608. Epub 2008 Apr 11.
Mutations in ATM (Ataxia telangiectasia mutated) result in Ataxia telangiectasia (A-T), a disorder characterized by progressive neurodegeneration. Despite advances in understanding how ATM signals cell cycle arrest, DNA repair, and apoptosis in response to DNA damage, it remains unclear why loss of ATM causes degeneration of post-mitotic neurons and why the neurological phenotype of ATM-null individuals varies in severity. To address these issues, we generated a Drosophila model of A-T. RNAi knockdown of ATM in the eye caused progressive degeneration of adult neurons in the absence of exogenously induced DNA damage. Heterozygous mutations in select genes modified the neurodegeneration phenotype, suggesting that genetic background underlies variable neurodegeneration in A-T. The neuroprotective activity of ATM may be negatively regulated by deacetylation since mutations in a protein deacetylase gene, RPD3, suppressed neurodegeneration, and a human homolog of RPD3, histone deacetylase 2, bound ATM and abrogated ATM activation in cell culture. Moreover, knockdown of ATM in post-mitotic neurons caused cell cycle re-entry, and heterozygous mutations in the cell cycle activator gene String/CDC25 inhibited cell cycle re-entry and neurodegeneration. Thus, we hypothesize that ATM performs a cell cycle checkpoint function to protect post-mitotic neurons from degeneration and that cell cycle re-entry causes neurodegeneration in A-T.
ATM(共济失调毛细血管扩张症突变基因)的突变会导致共济失调毛细血管扩张症(A-T),这是一种以进行性神经退行性变 为特征的疾病。尽管在理解ATM如何响应DNA损伤发出细胞周期停滞、DNA修复和细胞凋亡信号方面取得了进展,但仍不清楚为什么ATM的缺失会导致有丝分裂后神经元的退化,以及ATM基因缺失个体的神经学表型严重程度为何存在差异。为了解决这些问题,我们构建了一个A-T的果蝇模型。在没有外源性诱导DNA损伤的情况下,眼睛中ATM的RNA干扰敲低导致成年神经元的进行性退化。特定基因中的杂合突变改变了神经退行性变表型,这表明遗传背景是A-T中神经退行性变差异的基础。由于蛋白质脱乙酰酶基因RPD3的突变抑制了神经退行性变,并且RPD3的人类同源物组蛋白脱乙酰酶2在细胞培养中与ATM结合并消除了ATM的激活,因此ATM的神经保护活性可能受到去乙酰化的负调控。此外,有丝分裂后神经元中ATM的敲低导致细胞周期重新进入,并且细胞周期激活基因String/CDC25中的杂合突变抑制了细胞周期重新进入和神经退行性变。因此,我们假设ATM执行细胞周期检查点功能以保护有丝分裂后神经元免于退化,并且细胞周期重新进入会导致A-T中的神经退行性变。