Suppr超能文献

利用遗传标记确定数量性状网络中的边:NEO软件

Using genetic markers to orient the edges in quantitative trait networks: the NEO software.

作者信息

Aten Jason E, Fuller Tova F, Lusis Aldons J, Horvath Steve

机构信息

Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, USA.

出版信息

BMC Syst Biol. 2008 Apr 15;2:34. doi: 10.1186/1752-0509-2-34.

Abstract

BACKGROUND

Systems genetic studies have been used to identify genetic loci that affect transcript abundances and clinical traits such as body weight. The pairwise correlations between gene expression traits and/or clinical traits can be used to define undirected trait networks. Several authors have argued that genetic markers (e.g expression quantitative trait loci, eQTLs) can serve as causal anchors for orienting the edges of a trait network. The availability of hundreds of thousands of genetic markers poses new challenges: how to relate (anchor) traits to multiple genetic markers, how to score the genetic evidence in favor of an edge orientation, and how to weigh the information from multiple markers.

RESULTS

We develop and implement Network Edge Orienting (NEO) methods and software that address the challenges of inferring unconfounded and directed gene networks from microarray-derived gene expression data by integrating mRNA levels with genetic marker data and Structural Equation Model (SEM) comparisons. The NEO software implements several manual and automatic methods for incorporating genetic information to anchor traits. The networks are oriented by considering each edge separately, thus reducing error propagation. To summarize the genetic evidence in favor of a given edge orientation, we propose Local SEM-based Edge Orienting (LEO) scores that compare the fit of several competing causal graphs. SEM fitting indices allow the user to assess local and overall model fit. The NEO software allows the user to carry out a robustness analysis with regard to genetic marker selection. We demonstrate the utility of NEO by recovering known causal relationships in the sterol homeostasis pathway using liver gene expression data from an F2 mouse cross. Further, we use NEO to study the relationship between a disease gene and a biologically important gene co-expression module in liver tissue.

CONCLUSION

The NEO software can be used to orient the edges of gene co-expression networks or quantitative trait networks if the edges can be anchored to genetic marker data. R software tutorials, data, and supplementary material can be downloaded from: http://www.genetics.ucla.edu/labs/horvath/aten/NEO.

摘要

背景

系统遗传学研究已被用于识别影响转录本丰度和体重等临床特征的基因座。基因表达特征和/或临床特征之间的成对相关性可用于定义无向特征网络。几位作者认为,遗传标记(例如表达数量性状基因座,eQTL)可作为确定特征网络边方向的因果锚点。数十万遗传标记的可用性带来了新的挑战:如何将特征与多个遗传标记相关联(锚定),如何对支持边方向的遗传证据进行评分,以及如何权衡来自多个标记的信息。

结果

我们开发并实施了网络边定向(NEO)方法和软件,通过将mRNA水平与遗传标记数据以及结构方程模型(SEM)比较相结合,解决了从微阵列衍生的基因表达数据推断无混杂和有向基因网络的挑战。NEO软件实现了几种手动和自动方法来纳入遗传信息以锚定特征。通过分别考虑每条边来确定网络方向,从而减少误差传播。为了总结支持给定边方向的遗传证据,我们提出了基于局部SEM的边定向(LEO)分数,用于比较几个相互竞争的因果图的拟合度。SEM拟合指数允许用户评估局部和整体模型拟合度。NEO软件允许用户对遗传标记选择进行稳健性分析。我们通过使用F2小鼠杂交的肝脏基因表达数据恢复甾醇稳态途径中的已知因果关系,证明了NEO的实用性。此外,我们使用NEO研究肝脏组织中疾病基因与生物学上重要的基因共表达模块之间的关系。

结论

如果边可以锚定到遗传标记数据,NEO软件可用于确定基因共表达网络或数量性状网络的边方向。可从以下网址下载R软件教程、数据和补充材料:http://www.genetics.ucla.edu/labs/horvath/aten/NEO。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7775/2387136/e017b5eb60b0/1752-0509-2-34-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验