Suppr超能文献

基因程序活性描绘了多发性骨髓瘤的风险、复发及治疗反应性。

Genetic program activity delineates risk, relapse, and therapy responsiveness in multiple myeloma.

作者信息

Wall Matthew A, Turkarslan Serdar, Wu Wei-Ju, Danziger Samuel A, Reiss David J, Mason Mike J, Dervan Andrew P, Trotter Matthew W B, Bassett Douglas, Hershberg Robert M, Lomana Adrián López García de, Ratushny Alexander V, Baliga Nitin S

机构信息

Institute for Systems Biology, Seattle, WA, USA.

Bristol-Myers Squibb, Summit, NJ, USA.

出版信息

NPJ Precis Oncol. 2021 Jun 28;5(1):60. doi: 10.1038/s41698-021-00185-0.

Abstract

Despite recent advancements in the treatment of multiple myeloma (MM), nearly all patients ultimately relapse and many become refractory to multiple lines of therapies. Therefore, we not only need the ability to predict which patients are at high risk for disease progression but also a means to understand the mechanisms underlying their risk. Here, we report a transcriptional regulatory network (TRN) for MM inferred from cross-sectional multi-omics data from 881 patients that predicts how 124 chromosomal abnormalities and somatic mutations causally perturb 392 transcription regulators of 8549 genes to manifest in distinct clinical phenotypes and outcomes. We identified 141 genetic programs whose activity profiles stratify patients into 25 distinct transcriptional states and proved to be more predictive of outcomes than did mutations. The coherence of these programs and accuracy of our network-based risk prediction was validated in two independent datasets. We observed subtype-specific vulnerabilities to interventions with existing drugs and revealed plausible mechanisms for relapse, including the establishment of an immunosuppressive microenvironment. Investigation of the t(4;14) clinical subtype using the TRN revealed that 16% of these patients exhibit an extreme-risk combination of genetic programs (median progression-free survival of 5 months) that create a distinct phenotype with targetable genes and pathways.

摘要

尽管多发性骨髓瘤(MM)治疗方面最近取得了进展,但几乎所有患者最终都会复发,而且许多患者会对多种治疗方案产生耐药性。因此,我们不仅需要能够预测哪些患者疾病进展风险高,还需要一种方法来了解其风险背后的机制。在此,我们报告了一个基于881例患者的横断面多组学数据推断出的MM转录调控网络(TRN),该网络可预测124种染色体异常和体细胞突变如何因果性地扰动8549个基因的392个转录调节因子,从而表现为不同的临床表型和结局。我们鉴定出141个基因程序,其活性谱将患者分为25种不同的转录状态,并且证明其比突变更能预测结局。这些程序的一致性以及我们基于网络的风险预测的准确性在两个独立数据集中得到了验证。我们观察到现有药物干预的亚型特异性脆弱性,并揭示了复发的可能机制,包括免疫抑制微环境的建立。使用TRN对t(4;14)临床亚型进行研究发现,这些患者中有16%表现出基因程序的极端风险组合(无进展生存期中位数为5个月),从而产生具有可靶向基因和通路的独特表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验