Suppr超能文献

基于转录组因果网络的精神分裂症人脑的差异基因调控模式。

Differential gene regulatory pattern in the human brain from schizophrenia using transcriptomic-causal network.

机构信息

Department of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Genetic Medicine Building, CB#7361, Chapel Hill, NC, 27599-7264, USA.

Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA.

出版信息

BMC Bioinformatics. 2020 Oct 21;21(1):469. doi: 10.1186/s12859-020-03753-6.

Abstract

BACKGROUND

Common and complex traits are the consequence of the interaction and regulation of multiple genes simultaneously, therefore characterizing the interconnectivity of genes is essential to unravel the underlying biological networks. However, the focus of many studies is on the differential expression of individual genes or on co-expression analysis.

METHODS

Going beyond analysis of one gene at a time, we systematically integrated transcriptomics, genotypes and Hi-C data to identify interconnectivities among individual genes as a causal network. We utilized different machine learning techniques to extract information from the network and identify differential regulatory pattern between cases and controls. We used data from the Allen Brain Atlas for replication.

RESULTS

Employing the integrative systems approach on the data from CommonMind Consortium showed that gene transcription is controlled by genetic variants proximal to the gene (cis-regulatory factors), and transcribed distal genes (trans-regulatory factors). We identified differential gene regulatory patterns in SCZ-cases versus controls and novel SCZ-associated genes that may play roles in the disorder since some of them are primary expressed in human brain. In addition, we observed genes known associated with SCZ are not likely (OR = 0.59) to have high impacts (degree > 3) on the network.

CONCLUSIONS

Causal networks could reveal underlying patterns and the role of genes individually and as a group. Establishing principles that govern relationships between genes provides a mechanistic understanding of the dysregulated gene transcription patterns in SCZ and creates more efficient experimental designs for further studies. This information cannot be obtained by studying a single gene at the time.

摘要

背景

常见且复杂的特征是多个基因相互作用和调节的结果,因此,描述基因之间的互联关系对于揭示潜在的生物学网络至关重要。然而,许多研究的焦点是单个基因的差异表达或共表达分析。

方法

我们超越了一次分析一个基因的方法,系统地整合了转录组学、基因型和 Hi-C 数据,以识别个体基因之间的互联关系作为因果网络。我们利用不同的机器学习技术从网络中提取信息,并识别病例和对照组之间的差异调节模式。我们使用艾伦脑图谱的数据进行复制。

结果

在 CommonMind 联盟的数据上采用整合系统方法表明,基因转录受基因附近的遗传变异(顺式调节因子)和转录的远端基因(反式调节因子)控制。我们在 SCZ 病例与对照组之间识别出了差异的基因调控模式,以及可能在该疾病中发挥作用的新的 SCZ 相关基因,因为其中一些基因在人脑中有主要表达。此外,我们观察到与 SCZ 相关的已知基因不太可能(OR=0.59)对网络有高影响(度>3)。

结论

因果网络可以揭示单个基因和作为一个整体的基因的潜在模式和作用。建立控制基因之间关系的原则可以提供对 SCZ 中失调基因转录模式的机制理解,并为进一步研究创造更有效的实验设计。这些信息是无法通过逐个研究单个基因获得的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc9f/7579819/505bfb5e33c7/12859_2020_3753_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验